Prolonged activation of glutamate receptors leads to excitotoxicity. Several processes such as reactive oxygen species (ROS) production and activation of the calcium-dependent protease, calpain, contribute to glutamate-induced damage. It has been suggested that the ROS-producing enzyme, NADPH oxidase (NOX), plays a role in excitotoxicity. Studies have reported NOX activation after NMDA receptor stimulation during excitotoxic damage, but the role of non-NMDA and metabotropic receptors is unknown. We evaluated the roles of different glutamate receptor subtypes on NOX activation and neuronal death induced by the intrastriatal administration of glutamate in mice. In wild-type mice, NOX2 immunoreactivity in neurons and microglia was stimulated by glutamate administration, and it progressively increased as microglia became activated; calpain activity was also induced. By contrast, mice lacking NOX2 were less vulnerable to excitotoxicity, and there was reduced ROS production and protein nitrosylation, microglial reactivity, and calpain activation. These results suggest that NOX2 is stimulated by glutamate in neurons and reactive microglia through the activation of ionotropic and metabotropic receptors. Neuronal damage involves ROS production by NOX2, which, in turn, contributes to calpain activation.
Neuregulins, with the exception of neuregulin-4 (NRG4), have been shown to be extensively involved in many aspects of neural development and function and are implicated in several neurological disorders, including schizophrenia, depression and bipolar disorder. Here we provide the first evidence that NRG4 has a crucial function in the developing brain. We show that both the apical and basal dendrites of neocortical pyramidal neurons are markedly stunted in Nrg4−/− neonates in vivo compared with Nrg4+/+ littermates. Neocortical pyramidal neurons cultured from Nrg4−/− embryos had significantly shorter and less branched neurites than those cultured from Nrg4+/+ littermates. Recombinant NRG4 rescued the stunted phenotype of embryonic neocortical pyramidal neurons cultured from Nrg4−/− mice. The majority of cultured wild type embryonic cortical pyramidal neurons co-expressed NRG4 and its receptor ErbB4. The difference between neocortical pyramidal dendrites of Nrg4−/− and Nrg4+/+ mice was less pronounced, though still significant, in juvenile mice. However, by adult stages, the pyramidal dendrite arbors of Nrg4−/− and Nrg4+/+ mice were similar, suggesting that compensatory changes in Nrg4−/− mice occur with age. Our findings show that NRG4 is a major novel regulator of dendritic arborisation in the developing cerebral cortex and suggest that it exerts its effects by an autocrine/paracrine mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.