In mammals, meiosis is initiated at different time points in males and females, but the mechanism underlying this difference is unknown. Female germ cells begin meiosis during embryogenesis. In males, embryonic germ cells undergo G 0 ͞G 1 mitotic cell cycle arrest, and meiosis begins after birth. In mice, the Stimulated by Retinoic Acid Gene 8 (Stra8) has been found to be required for the transition into meiosis in both female and male germ cells. Stra8 is expressed in embryonic ovaries just before meiotic initiation, whereas its expression in testes is first detected after birth. Here we examine the mechanism underlying the sex-specific timing of Stra8 expression and meiotic initiation in mice. Our work shows that signaling by retinoic acid (RA), an active derivative of vitamin A, is required for Stra8 expression and thereby meiotic initiation in embryonic ovaries. We also discovered that RA is sufficient to induce Stra8 expression in embryonic testes and in vitamin Adeficient adult testes in vivo. Finally, our results show that cytochrome p450 (CYP)-mediated RA metabolism prevents premature Stra8 expression in embryonic testes. Treatment with an inhibitor specific to RA-metabolizing enzymes indicates that a cytochrome p450 from the 26 family (CYP26) is responsible for delaying Stra8 expression in embryonic testes. Sex-specific regulation of RA signaling thus plays an essential role in meiotic initiation in embryonic ovaries and precludes its occurrence in embryonic testes. Because RA signaling regulates Stra8 expression in both embryonic ovaries and adult testes, this portion of the meiotic initiation pathway may be identical in both sexes.sex determination
A gene mapping to the sex-determining region of the mouse Y chromosome is deleted in a line of XY female mice mutant for Tdy, and is expressed at a stage during male gonadal development consistent with its having a role in testis determination. This gene is a member of a new family of at least five mouse genes, related by an amino-acid motif showing homology to other known or putative DNA-binding domains.
Sry is expressed at higher levels in the adult testis, where no function has been determined, than in the genital ridge, its critical site of action. cDNA and 5' RACE clones isolated from testis or from Sry-transfected cell lines have an unusual structure, with 3' sequences located in a 5' position. RNAase protection assays and reverse transcription polymerase chain reactions confirmed that these unusual RNA molecules represent the most abundant transcript in testis. Furthermore, oligonucleotide hybridization and RNAase H digestion proved that these Sry RNA molecules are circular. Similar transcripts were detected in the testes of mice with Mus musculus musculus, Mus musculus domesticus, and Mus spretus Sry genes. The circular RNA is found in the cytoplasm but is not substantially bound to polysomes. We suggest that the circles arise from normal splicing processes as a consequence of the unusual genomic structure surrounding the Sry locus in the mouse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.