Oxidative stress causes K63-linked ubiquitination of ribosomes by the E2 ubiquitin conjugase, Rad6. How Rad6-mediated ubiquitination of ribosomes affects global translation, however, is unclear. We therefore performed Ribo-seq and Disome-seq in Saccharomyces cerevisiae, and found that oxidative stress caused ribosome pausing at specific amino acid motifs, and this also led to ribosome collisions. However, these redox pausing signatures were lost in the absence of Rad6 but did not depend on the ribosome-associated quality control (RQC) pathway. We also found that Rad6 is needed to inhibit overall translation in response to oxidative stress and its deletion leads to increased expression of antioxidant genes. Finally, we observed that the lack of Rad6 leads to changes during translation initiation that affect activation of the integrated stress response (ISR) pathway. Our results provide a high-resolution picture of the gene expression changes during oxidative stress and unravel an additional stress response pathway affecting translation elongation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.