A model was developed to simulate acoustically the effects of excitation spread in cochlear implants (CI). Based on neurophysiologic data, the proposed model simulates the electrical-current decay rate associated with broad and narrow types of excitation, such as those produced by monopolar and bipolar electrode configurations. The effect of excitation spread on speech intelligibility was simulated in normal-hearing subjects by varying the slopes of the synthesis bands in the noise vocoder. Sentences and monosyllabic words processed via 4-16 channels of stimulation with varying degrees of excitation spread were presented to normal-hearing listeners for identification. Results showed significant interaction between spectral resolution (number of channels) and spread of excitation. The effect of narrowing the excitation spread was minimal when the spectral resolution was sufficiently good (>8 channels) but it was significant when the spectral resolution was poor (4 channels). A significant decrement in performance was observed for extremely narrow excitation spread. This outcome is partly consistent with behavioral data obtained with cochlear implant studies in that CI users tend to do as well or better with monopolar stimulation than with bipolar stimulation.
The present article describes an approach to the evaluation of psychoacoustic data from the hearing impaired. The results obtained from the hearing impaired in several studies of frequency resolution, temporal resolution, and speech recognition are compared to the results expected for noise-masked normal listeners. It is presumed in this approach that the hypothetical noise-masked normal listeners have masked thresholds that agree perfectly with the quiet thresholds of the hearing-impaired subjects. Using this approach, most of the results obtained from impaired ears on spectral-resolution and speech-recognition tasks could be accurately predicted, an exception being results from spectral-resolution paradigms using fixed-level signals. Some of the data from hearing-impaired listeners on temporal-resolution tasks, on the other hand, could not be adequately described with this approach. The latter data, however, were much more limited. Additional data are needed to better evaluate the adequacy of this approach in describing the performance of the hearing impaired on temporal-resolution tasks.
The effects of decision criterion on response latencies of binary decisions were examined. The stimuli comprised two, partly overlapping, "normal" distributions of either two-digit numbers or tonal frequencies. Individual stimuli were randomly sampled from the distributions, and subjects had to decide from which distribution the stimulus was sampled. The decision goal was to maximize the expected gain using three different payoff matrices. Decision latencies with and without prior knowledge of optimal decision criteria were measured. In a control task, subjects were asked only to label stimuli as being either above or below the optimal criteria (without regard for a posteriori probabilities or expected gain). The relation between criterion and latency was examined by means of a trial-by-trial analysis of the stimuli and the responses. Response latency was inversely related both to the distance between the stimulus and the decision criterion and to the probability of the response elicited by the stimulus. Response latencies showed a maximum at the criterion in all conditions. These results were obtained with different stimulus modalities (tones or numbers), different discriminability levels within the auditory modality, and different decision tasks. It is proposed that the decision criterion is the primary determinant of response latencies of binary decisions.
This paper extends previous research on listeners' abilities to discriminate the details of brief tonal components occurring within sequential auditory patterns (Watson et al., 1975, 1976). Specifically, the ability to discriminate increments in the duration delta t of tonal components was examined. Stimuli consisted of sequences of ten sinusoidal tones: a 40-ms test tone to which delta t was added, plus nine context tones with individual durations fixed at 40 ms or varying between 20 and 140 ms. The level of stimulus uncertainty was varied from high (any of 20 test tones occurring in any of nine factorial contexts), through medium (any of 20 test tones occurring in ten contexts), to minimal levels (one test tone occurring in a single context). The ability to discriminate delta t depended strongly on the level of stimulus uncertainty, and on the listener's experience with the tonal context. Asymptotic thresholds under minimal uncertainty approached 4-6 ms, or 15% of the duration of the test tones; under high uncertainty, they approached 40 ms, or 10% of the total duration of the tonal sequence. Initial thresholds exhibited by inexperienced listeners are two-to-four times greater than the asymptotic thresholds achieved after considerable training (20,000-30,000 trials). Isochronous sequences, with context tones of uniform, 40-ms duration, yield lower thresholds than those with components of varying duration. The frequency and temporal position of the test tones had only minor effects on temporal discrimination. It is proposed that a major determinant of the ability to discriminate the duration of components of sequential patterns is the listener's knowledge about "what to listen for and where." Reduced stimulus uncertainty and extensive practice increase the precision of this knowledge, and result in high-resolution discrimination performance. Increased uncertainty, limited practice, or both, would allow only discrimination of gross changes in the temporal or spectral structure of the sequential patterns.
Both otoacoustic emissions (OAEs) and auditory evoked potentials (AEPs) are sexually dimorphic, and both are believed to be influenced by prenatal androgen exposure. OAEs and AEPs were collected from people affected by 1 of 3 categories of disorders of sex development (DSD) – (1) women with complete androgen insensitivity syndrome (CAIS); (2) women with congenital adrenal hyperplasia (CAH); and (3) individuals with 46, XY DSD including prenatal androgen exposure who developed a male gender despite initial rearing as females (men with DSD). Gender identity (GI) and role (GR) were measured both retrospectively and at the time of study participation, using standardized questionnaires. The main objective of this study was to determine if patterns of OAEs and AEPs correlate with gender in people affected by DSD and in controls. A second objective was to assess if OAE and AEP patterns differed according to degrees of prenatal androgen exposure across groups. Control males, men with DSD, and women with CAH produced fewer spontaneous OAEs (SOAEs) – the male-typical pattern – than control females and women with CAIS. Additionally, the number of SOAEs produced correlated with gender development across all groups tested. Although some sex differences in AEPs were observed between control males and females, AEP measures did not correlate with gender development, nor did they vary according to degrees of prenatal androgen exposure, among people with DSD. Thus, OAEs, but not AEPs, may prove useful as bioassays for assessing early brain exposure to androgens and predicting gender development in people with DSD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.