Research on batteries mostly focuses on electrodes and electrolytes while few activities regard separator membranes. However, they could be used as a toolbox for injecting chemical functionalities to capture unwanted species and enhance battery lifetime. Here, we report the use of biological membranes hosting a nanopore sensor for electrical single molecule detection and use aqueous sodium polysulfides encountered in sulfur-based batteries for proof of concept. By investigating the host-guest interaction between polysulfides of different chain-lengths and cyclodextrins, via combined chemical approaches and molecular docking simulations, and using a selective nanopore sensor inserted into a lipid membrane, we demonstrate that supramolecular polysulfide/cyclodextrin complexes only differing by one sulfur can be discriminated at the single molecule level. Our findings offer innovative perspectives to use nanopores as electrolyte sensors and chemically design membranes capable of selective speciation of parasitic molecules for battery applications and therefore pave the way towards smarter electrochemical storage systems.
The mitochondrial adenosine diphosphate/adenosine triphosphate (ADP/ATP) carrier has been recently crystallized in complex with its specific inhibitor carboxyatractyloside (CATR). In the crystal structure, the six-transmembrane helix bundle that defines the nucleotide translocation pathway is closed on the matrix side due to sharp kinks in the odd-numbered helices. The closed conformation is further sealed by the loops protruding into the matrix that interact through an intricate network of charge-pairs. To gain insight into its structural dynamics we performed molecular dynamics (MD) simulation studies of the ADP/ATP carrier with and without its cocrystallized inhibitor. The two trajectories sampled a conformational space around two different configurations characterized by distinct salt-bridge networks with a significant shift from inter- to intrarepeat bonding on the matrix side in the absence of CATR. Analysis of the geometrical parameters defining the transmembrane helices showed that even-numbered helices can undergo a face rotation, whereas odd-numbered helices can undergo a change in the wobble angle with a conserved proline acting as molecular hinge. Our results provide new information on the dynamical properties of the ADP/ATP carrier and for the first time yield a detailed picture of a stable carrier conformation in absence of the inhibitor.
Poly(vinyl alcohol) microcapsules have been tailored as carriers to deliver camptothecin, an anticancer drug poorly soluble in water. The capsules have been reacted with a chitosan--folate complex in order to selectively target cancer cells overexpressing the folic acid receptor. Microcapsules decorated with the chitosan--folate complex have been characterized in their uptake and release of camptothecin, following the absorption band at λ = 370 nm diagnostic of the drug molecule. The selectivity of chitosan-folate microcapsules in targeting cancer cells has been demonstrated by fluorescence microscopy using HeLa cells, overexpressing the folate receptor and NIH3t3 fibroblasts as a negative control. The chitosan--folate microcapsules loaded with camptothecin significantly reduce the proliferation of HeLa tumor cells, while they have a negligible effect on fibroblasts. This work demonstrates that the chitosan--folate microcapsules represent a promising system to selectively target hydrophobic drugs, such as camptothecin, to tumor cells.
A semiautomatic procedure to build complex atomistic covalently linked DNA nanocages has been implemented in a user-friendly, free, and fast program. As a test set, seven different truncated DNA polyhedra, composed by B-DNA double helices connected through short single-stranded linkers, have been generated. The atomistic structures, including a tetrahedron, a cube, an octahedron, a dodecahedron, a triangular prism, a pentagonal prism, and a hexagonal prism, have been probed through classical molecular dynamics and analyzed to evaluate their structural and dynamical properties and to highlight possible building faults. The analysis of the simulated trajectories also allows us to investigate the role of the different geometries in defining nanocages stability and flexibility. The data indicate that the cages are stable and that their structural and dynamical parameters measured along the trajectories are slightly affected by the different geometries. These results demonstrate that the constraints imposed by the covalent links induce an almost identical conformational variability independently of the three-dimensional geometry and that the program presented here is a reliable and valid tool to engineer DNA nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.