Female runners have a two-fold risk of sustaining certain running-related injuries as compared to their male counterparts. Thus, a comprehensive understanding of the sex-related differences in running kinematics is necessary. However, previous studies have either used discrete time point variables and inferential statistics and/or relatively small subject numbers. Therefore, the first purpose of this study was to use a principal component analysis (PCA) method along with a support vector machine (SVM) classifier to examine the differences in running gait kinematics between female and male runners across a large sample of the running population as well as between two age-specific sub-groups. Bilateral 3-dimensional lower extremity gait kinematic data were collected during treadmill running. Data were analysed on the complete sample (n = 483: female 263, male 220), a younger subject group (n = 56), and an older subject group (n = 51). The PC scores were first sorted by the percentage of variance explained and we also employed a novel approach wherein PCs were sorted based on between-gender statistical effect sizes. An SVM was used to determine if the sex and age conditions were separable and classifiable based on the PCA. Forty PCs explained 84.74% of the variance in the data and an SVM classification accuracy of 86.34% was found between female and male runners. Classification accuracies between genders for younger subjects were higher than a subgroup of older runners. The observed interactions between age and gender suggest these factors must be considered together when trying to create homogenous sub-groups for research purposes.
BackgroundFemales have a two-fold risk of developing knee osteoarthritis (OA) as compared to their male counterparts and atypical walking gait biomechanics are also considered a factor in the aetiology of knee OA. However, few studies have investigated sex-related differences in walking mechanics for patients with knee OA and of those, conflicting results have been reported. Therefore, this study was designed to examine the differences in gait kinematics (1) between male and female subjects with and without knee OA and (2) between healthy gender-matched subjects as compared with their OA counterparts.MethodsOne hundred subjects with knee OA (45 males and 55 females) and 43 healthy subjects (18 males and 25 females) participated in this study. Three-dimensional kinematic data were collected during treadmill-walking and analysed using (1) a traditional approach based on discrete variables and (2) a machine learning approach based on principal component analysis (PCA) and support vector machine (SVM) using waveform data.ResultsOA and healthy females exhibited significantly greater knee abduction and hip adduction angles compared to their male counterparts. No significant differences were found in any discrete gait kinematic variable between OA and healthy subjects in either the male or female group. Using PCA and SVM approaches, classification accuracies of 98–100 % were found between gender groups as well as between OA groups.ConclusionsThese results suggest that care should be taken to account for gender when investigating the biomechanical aetiology of knee OA and that gender-specific analysis and rehabilitation protocols should be developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.