We report a simple and scalable bottom-up technique for fabricating broadband antireflection gratings on solar-grade multicrystalline silicon (mc-Si) wafers. A Langmuir-Blodgett process is developed to assemble close-packed silica microspheres on rough mc-Si substrates. Subwavelength moth-eye pillars can then be patterned on mc-Si by using the silica microspheres as structural template. Hemispherical reflectance measurements show that the resulting mc-Si gratings exhibit near zero reflection for a wide range of wavelengths. Both experimental results and theoretical prediction using a rigorous coupled-wave analysis model show that close-packed moth-eye arrays exhibit better antireflection performance than non-close-packed arrays due to a smoother refractive index gradient. V
We report a systematic, experimental, and theoretical investigation on the surface plasmon resonance (SPR) sensing using optical disks with different track pitches, including Blu-ray disk (BD), digital versatile disk (DVD), and compact disk (CD). Optical reflection measurements indicate that CD and DVD exhibit much higher SPR sensitivity than BD. Both experiments and finite-difference time-domain simulations reveal that the SPR sensitivity is significantly affected by the diffraction order of the SPR peaks and higher diffraction order results in lower sensitivity. Numerical simulations also show that very high sensitivity (∼1600 nm per refractive index unit) is achievable by CDs.
Here we report a simple and scalable soft-lithography-based templating technology for fabricating Au-covered oxide (titania and zirconia) gratings by using DVDs as a structural template. The resulting plasmonic gratings simultaneously exhibit very high surface plasmon resonance (SPR) sensitivity (up to ∼940 nm per refractive index unit, nm per RIU) and figure of merit (FOM, up to 62.5). The effects of thermal annealing of the templated oxide gratings on their final plasmonic properties have been systematically investigated by both experiments and finite-difference time-domain (FDTD) simulations. Higher SPR sensitivities and slightly reduced FOMs have been observed for the annealed gratings. Additionally, the amplitude of the SPR dips gradually decreases with increasing annealing temperatures. Scanning electron microscopy and X-ray diffraction show that the annealing process enlarges the crystal domain sizes of the oxides and smoothens the final plasmonic grating surface. Systematic FDTD simulations reveal that the SPR properties (e.g., dip amplitude) of Au-covered oxide gratings are significantly affected by the deformation of the track-pitch structure caused by thermal annealing, agreeing with the experimental results. The outstanding SPR performance combined with the high thermal stability of the crystalline oxides could make the templated plasmonic gratings a promising SPR platform for many important sensing applications, such as in situ probing heterogeneous catalytic reactions under realistic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.