This is an extended version of the paper presented at the 4th International Workshop NFMCP 2015 held in conjunction with ECML PKDD 2015. The initial version has been published in NFMCP 2015 conference proceedings as part of Springer Series. This paper presents a novel approach to financial times series (FTS) prediction by mapping hourly foreign exchange data to string representations and deriving simple trading strategies from them. To measure the degree of similarity in these market strings we apply familiar string kernels, bag of words and n-grams, whilst also introducing a new kernel, time-decay n-grams, that captures the temporal nature of FTS. In the process we propose a sequential Parzen windows algorithm based on discrete representations where trading decisions for each string are learned in an online manner and are thus subject to temporal fluctuations. We evaluate the strength of a number of representations using both the string version and its continuous counterpart, whilst also comparing the performance of different learning algorithms on these representations, namely support vector machines, Parzen windows and Fisher discriminant analysis. Our extensive experiments show that the simple string representation coupled with the sequential Parzen windows approach is capable of outperforming other more exotic approaches, supporting the idea that when it comes to working in high noise environments often the simplest approach is the most effective.
In this paper we apply one-class support vector machine (OC-SVM) to identify potential anomalies in financial time series. We view anomalies as deviations from a prevalent distribution which is the main source behind the original signal. We are interested in detecting changes in the distribution and the timing of the occurrence of the anomalous behaviour in financial time series. The algorithm is applied to synthetic and empirical data. We find that our approach detects changes in anomalous behaviour in synthetic data sets and in several empirical data sets. However, it requires further work to ensure a satisfactory level of consistency and theoretical rigour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.