ObjectivesObesity is associated with low levels of sex hormone-binding globulin (SHBG). While the reason is not fully understood, we aimed to study the association between serum insulin and levels of SHBG in a random population.Design and methodsBetween 2001 and 2005, a random sample of 2816 participants aged 30–74 years were enrolled in a cross-sectional survey in the South-west of Sweden. Fasting blood samples were collected and an oral glucose tolerance test (OGTT) was conducted in all subjects without known diabetes. Diabetes mellitus was defined according to criteria from WHO, and clinical characteristics were used to discriminate between type 1 (T1D) and type 2 diabetes (T2D). Analyses of SHBG were successful in 2782 participants (98%), who thus constituted the current study population.ResultsWe found significant inverse association between levels of SHBG and fasting serum insulin in both genders (men: β=−0.090, P=0.001; women: β=−0.197, P<0.001), which was independent of differences in age and BMI. The associations remained when also differences in fasting plasma glucose were accounted for (men: β=−0.062, P=0.022; women: β=−0.176, P≤0.001). Subjects with T1D exhibited higher levels of SHBG than both T2D (men: δ=15.9 nmol/l, P<0.001; women: δ=71.1 nmol/l, P<0.001) and non-diabetic subjects (men: δ=15.1 nmol/l, P<0.001; women: δ=72.9 nmol/l, P<0.001) independent of age, BMI and fasting glucose levels.ConclusionThese findings are consistent with high levels of SHBG in T1D, and correspondingly low levels in T2D subjects, suggesting an inhibitory effect of insulin on the SHBG production in the liver.
Multiplex proteomic platforms provide excellent tools for investigating associations between multiple proteins and disease (e.g., diabetes) with possible prognostic, diagnostic, and therapeutic implications. In this study our aim was to explore novel pathophysiological pathways by examining 92 proteins and their association with incident diabetes in a population-based cohort (146 cases of diabetes versus 880 controls) followed over 8 years. After adjusting for traditional risk factors, we identified seven proteins associated with incident diabetes. Four proteins (Scavenger receptor cysteine rich type 1 protein M130, Fatty acid binding protein 4, Plasminogen activator inhibitor 1 and Insulin-like growth factor-binding protein 2) with a previously established association with incident diabetes and 3 proteins (Cathepsin D, Galectin-4, Paraoxonase type 3) with a novel association with incident diabetes. Galectin-4, with an increased risk of diabetes, and Paraoxonase type 3, with a decreased risk of diabetes, remained significantly associated with incident diabetes after adjusting for plasma glucose, implying a glucose independent association with diabetes.
BackgroundThe aim of the present study was to investigate the associations between endogenous testosterone concentrations and the incidence of acute myocardial infarction (AMI) in men and women with and without type 2 diabetes.MethodsThe study comprised 1109 subjects ≥40 years of age (mean age 62 ± 12 years) participating in a baseline survey in Sweden in 1993–94. Information about smoking habits and physical activity was obtained using validated questionnaires. Serum concentrations of testosterone and sex hormone-binding globulin (SHBG) were obtained using radioimmunoassay. Diagnosis of type 2 diabetes was based on WHO’s 1985 criteria. Individual patient information on incident AMI was ascertained by record linkage with national inpatient and mortality registers from baseline through 2011.ResultsThe prevalence of type 2 diabetes at baseline was 10.0 % in men and 7.5 % in women. During a mean follow-up of 14.1 years (±5.3), there were 74 events of AMI in men and 58 in women. In age-adjusted Cox models, a significant inverse association between concentrations of testosterone and AMI-morbidity was found in men with type 2 diabetes (HR = 0.86 CI (0.75–0.98)). In a final model also including waist-to-hip ratio, systolic blood pressure, total cholesterol and active smoking, the association still remained statistically significant (HR = 0.754 CI (0.61–0.92)).ConclusionLow concentrations of testosterone predicted AMI in men with type 2 diabetes independent of other risk factors. Trials with testosterone investigating the effect regarding cardiovascular outcome are still lacking. Future trials in this field should take into account a modification effect of diabetes.
The objective of this study was to investigate whether there is a bidirectional association between testosterone concentrations and insulin resistance, in a prospective population study. A random population sample of 1400 men, aged 30–74, was examined in 2002–2005 in southwestern Sweden and followed up in 2012–2014 (N = 657). After excluding subjects without information on sex hormones and insulin resistance, 1282 men were included in the baseline study. Fasting measurements of plasma glucose, insulin and hormones were performed. Insulin resistance was defined using HOMA-Ir. Mean age at baseline was 47.3 ± 11.4 years. From the follow-up survey 546 men were included, mean age 57.7 ± 11.6 years. Low concentrations of total testosterone at baseline were significantly associated with high logHOMA-Ir at follow-up in a multivariable model including age, waist–hip ratio, physical activity, alcohol intake, smoking, LDL, CRP, hypertension, diabetes and logHOMA-Ir at baseline as covariates (β = −0.096, P = 0.006). Similar results were observed for bioavailable testosterone. Men within the lowest quartile of total testosterone at baseline had significantly higher logHOMA-Ir at follow-up than other quartiles (Q1 vs Q2 P = 0.008, Q1 vs Q3 P = 0.001, Q1 vs Q4 P = 0.052). Multivariable analysis of the impact of insulin resistance at baseline on testosterone levels at follow-up revealed no significant associations regarding testosterone concentrations (β = −0.003, P = 0.928) or bioavailable testosterone (β = −0.006, P = 0.873), when adjusting for baseline concentrations of total testosterone, age, waist–hip-ratio, LDL, CRP, physical activity, alcohol intake, smoking, hypertension and diabetes. Low testosterone concentrations at baseline predicted higher insulin resistance at follow-up, but high insulin resistance at baseline could not predict low testosterone at follow-up.
insulin resistance predicts CVD in the general population; however, men may be more vulnerable to increased insulin resistance than women, and physically inactive men seem to be at high risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.