The Deployable Low‐Band Ionosphere and Transient Experiment (DLITE) is a four‐element interferometric radio telescope made from mostly commercial off‐the‐shelf parts to minimize costs and maximize ease of deployment. It operates in the high frequency and very high frequency (VHF) regimes, nominally in a 30–40 MHz band, but with good sensitivity (sky‐noise dominated) in the 20–80 MHz range. Its configuration is optimized to probe ionospheric structure using the so‐called “A‐Team,” exceptionally bright sources of cosmic radio emission. Methods have been developed to track the apparent positions and intensities of A‐Team sources without the need for beam forming to enable measurements of VHF scintillations as well as total electron content gradients. Time difference of arrival and frequency difference of arrival methods have been adapted for all‐sky imaging to facilitate both statistical measurements of scintillation levels and time domain astronomy. This study provides a detailed description of the system design, the analysis algorithms, and the science that can be conducted using results from two prototype DLITE systems in Maryland and New Mexico.
Solar radio bursts (SRBs) are brief periods of enhanced radio emission from the Sun. SRBs can provide unique insights into the plasma structure where emission occurs. SRBs can also provide critical information concerning space weather events such as coronal mass ejections or solar energetic particle events. Providing continuous monitoring of SRBs requires a full network of detectors continuously monitoring the Sun. A promising new network is being developed, employing a four-element interferometer called the Deployable Low-band Ionosphere and Transient Experiment (DLITE) array. DLITE, which operates in a 30–40 MHz band, was specifically designed to probe the Earth’s ionosphere using high resolution measurements (1.024-s temporal resolution, 16.276-kHz frequency resolution); however, this also makes DLITE a powerful new tool for providing detailed observations of SRBs at these frequencies. DLITE is particularly adept at detecting long-duration SRBs like Type II and Type IV bursts. DLITE provides high resolution SRB data that can complement ground-based networks like e-Callisto or space-based observations, e.g., from Wind/WAVES. As an inexpensive interferometer, DLITE has strong potential as an educational tool: DLITE can be used to study the ionosphere, SRBs, and even Jovian radio bursts. Future DLITE arrays could be enhanced by using the full 20–80 MHz band accessible by the antennas and employing its millisecond time-resolution capability; this would improve DLITE’s ability to track long-duration bursts, create the opportunity to study short-duration Type III bursts in detail, and, in particular, make the study of Type I bursts practical.
<p>Solar radio bursts (SRBs) are brief periods of enhanced radio emission from the Sun which contain information concerning the plasma where the emission originates; consequently, SRBs can provide critical information concerning space weather events such as coronal mass ejections (CMEs). A new network of four-element interferometers is being developed and used to monitor SRBs. These interferometers, called the Deployable Low-band Ionosphere and Transient Experiment (DLITE) arrays, operate in a 30-40 MHz band and were originally designed to probe the Earth&#8217;s ionosphere using high resolution measurements (1.024-s temporal resolution, 16.276-kHz frequency resolution). The DLITE network has recently been demonstrated to be&#160; a powerful tool for detailed observations of SRBs at these frequencies. We have used DLITE to detect long-duration Type II and Type IV SRBs. Each DLITE array provides a higher sensitivity (e.g. >10 dB) compared to single-receiver stations using the same antenna. We demonstrate DLITE's enhanced functionality by examining SRBs associated with a CME on May 11, 2022. The high resolution SRB data that DLITE provides can complement ground-based networks like e-Callisto or space-based observations, e.g., from <em>Wind</em>/WAVES. Future improvements could be made to DLITE arrays by utilizing the 20-80 MHz band and millisecond time-resolution possible by the antennas. This would expand DLITE&#8217;s detection ability to shorter Type I and Type III SRBs and improve its ability to track long-duration bursts.</p> <p>&#160;</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.