Amide functional groups are prominent in a broad range of organic compounds with diverse beneficial applications. In this work, we report the synthesis of these functional groups via an iron(iii) chloride-catalyzed direct amidation of esters. The reactions are conducted under solvent-free conditions and found to be compatible with a range of amine and ester substrates generating the desired amides in short reaction times and good to excellent yields at a catalyst loading of 15 mol%.
Amide functional groups are a structural feature in a vast array of beneficial organic molecules. This has resulted in a surge in new methodologies developed to enable access to this functional group using a broad range of coupling partners. Herein, we report a palladium-catalysed reductive aminocarbonylation of aryl bromides and iodides with nitroarenes to afford the respective amide products. The developed protocol employs Mo(CO)6 as a carbonyl source and a combination of Zn and TMSCl as co-reducing agents. For most substrates, the anticipated amide products were obtained in modest to high amide product yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.