Plasmodium falciparum, the main agent of malaria expresses six members of the heat shock protein 70 (Hsp70) family. Hsp70s serve as protein folding facilitators in the cell. Amongst the six Hsp70 species that P. falciparum expresses, Hsp70‐x (PfHsp70‐x), is partially exported to the host red blood cell where it is implicated in host cell remodeling. Nearly 500 proteins of parasitic origin are exported to the parasite‐infected red blood cell (RBC) along with PfHsp70‐x. The role of PfHsp70‐x in the infected human RBC remains largely unclear. One of the defining features of PfHsp70‐x is the presence of EEVN residues at its C‐terminus. In this regard, PfHsp70‐x resembles canonical eukaryotic cytosol‐localized Hsp70s which possess EEVD residues at their C‐termini in place of the EEVN residues associated with PfHsp70‐x. The EEVD residues of eukaryotic Hsp70s facilitate their interaction with co‐chaperones. Characterization of the role of the EEVN residues of PfHsp70‐x could provide insights into the function of this protein. In the current study, we expressed and purified recombinant PfHsp70‐x (full length) and its EEVN minus form (PfHsp70‐xT). We then conducted structure‐ function assays towards establishing the role of the EEVN motif of PfHsp70‐x. Our findings suggest that the EEVN residues of PfHsp70‐x are important for its ATPase activity and chaperone function. Furthermore, the EEVN residues are crucial for the direct interaction between PfHsp70‐x and human Hsp70‐Hsp90 organizing protein (hHop) in vitro. Hop facilitates functional cooperation between Hsp70 and Hsp90. However, it remains to be established if PfHsp70‐x and hHsp90 cooperate in vivo.
Fucoidans are complex polysaccharides derived from brown seaweeds which consist of considerable proportions of L-fucose and other monosaccharides, and sulphated ester residues. The search for novel and natural bioproduct drugs (due to toxicity issues associated with chemotherapeutics) has led to the extensive study of fucoidan due to reports of it having several bioactive characteristics. Among other fucoidan bioactivities, antidiabetic and anticancer properties have received the most research attention in the past decade. However, the elucidation of the fucoidan structure and its biological activity is still vague. In addition, research has suggested that there is a link between diabetes and cancer; however, limited data exist where dual chemotherapeutic efforts are elucidated. This review provides an overview of glucose metabolism, which is the central process involved in the progression of both diseases. We also highlight potential therapeutic targets and show the relevance of fucoidan and its derivatives as a candidate for both cancer and diabetes therapy.
Although there are chemotherapeutic efforts in place for Type 2 diabetes mellitus (T2DM), there is a need for novel strategies (including natural products) to manage T2DM. Fucoidan, a sulphated polysaccharide was extracted from Ecklonia radiata. The integrity of the fucoidan was confirmed by structural analysis techniques such as FT-IR, NMR and TGA. In addition, the fucoidan was chemically characterised and tested for cell toxicity. The fucoidan was investigated with regards to its potential to inhibit α-amylase and α-glucosidase. The fucoidan was not cytotoxic and inhibited α-glucosidase (IC50 19 µg/mL) more strongly than the standard commercial drug acarbose (IC50 332 µg/mL). However, the fucoidan lacked potency against α-amylase. On the other hand, acarbose was a more potent inhibitor of α-amylase (IC50 of 109 µg/mL) than α-glucosidase. Due to side effects associated with the use of acarbose, a combination approach using acarbose and fucoidan was investigated. The combination showed synergistic inhibition (>70%) of α-glucosidase compared to when the drugs were used alone. The medicinal implication of this synergism is that a regimen with a reduced acarbose dose may be used, thus minimising side effects to the patient, while achieving the desired therapeutic effect for managing T2DM.
Human colorectal cancer (CRC) is a recurrent, deadly malignant tumour with a high incidence. The incidence of CRC is of increasing alarm in highly developed countries, as well as in middle to low-income countries, posing a significant global health challenge. Therefore, novel management and prevention strategies are vital in reducing the morbidity and mortality of CRC. Fucoidans from South African seaweeds were hot water extracted and structurally characterised using FTIR, NMR and TGA. The fucoidans were chemically characterised to analyse their composition. In addition, the anti-cancer properties of the fucoidans on human HCT116 colorectal cells were investigated. The effect of fucoidans on HCT116 cell viability was explored using the resazurin assay. Thereafter, the anti-colony formation potential of fucoidans was explored. The potency of fucoidans on the 2D and 3D migration of HCT116 cells was investigated by wound healing assay and spheroid migration assays, respectively. Lastly, the anti-cell adhesion potential of fucoidans on HCT116 cells was also investigated. Our study found that Ecklonia sp. Fucoidans had a higher carbohydrate content and lower sulphate content than Sargassum elegans and commercial Fucus vesiculosus fucoidans. The fucoidans prevented 2D and 3D migration of HCT116 colorectal cancer cells to 80% at a fucoidan concentration of 100 µg/mL. This concentration of fucoidans also significantly inhibited HCT116 cell adhesion by 40%. Moreover, some fucoidan extracts hindered long-term colony formation by HCT116 cancer cells. In summary, the characterised fucoidan extracts demonstrated promising anti-cancer activities in vitro, and this warrants their further analyses in pre-clinical and clinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.