The primary objective of the FDA-led Sequencing and Quality Control Phase 2 (SEQC2) project is to develop standard analysis protocols and quality control metrics for use in DNA testing to enhance scientific research and precision medicine. This study reports a targeted next generation sequencing (NGS) method that enables more accurate detection of actionable mutations in circulating tumor DNA (ctDNA) clinical specimens. This advancement was enabled by designing a synthetic internal standard spike-in for each actionable mutation target, suitable for use in NGS following hybrid-capture enrichment and unique molecular index (UMI) or non-UMI library preparation. When mixed with contrived ctDNA reference samples, internal standards enabled calculation of technical error rate, limit of blank, and limit of detection for each variant at each nucleotide position, in each sample. True positive mutations with variant allele fraction too low for detection by current practice were detected with this method, thereby increasing sensitivity.
Clinical laboratories routinely use formalin-fixed paraffin-embedded (FFPE) tissue or cell block cytology samples in oncology panel sequencing to identify mutations that can predict patient response to targeted therapy. To understand the technical error due to FFPE processing, a robustly characterized normal cell line was used to create FFPE samples with four different pre-tissue processing formalin fixation times. A total of 96 FFPE sections were then distributed to different laboratories for targeted sequencing analysis by four oncopanels, and variants resulting from technical error were identified. Tissue sections that failed more frequently showed low cellularity, lower than recommended library preparation DNA input, or target sequencing depth. Importantly, sections from block surfaces were more likely to show FFPE-specific errors, akin to “edge effects” seen in histology, and the depth of formalin damage was related to fixation time. To assure reliable results, we recommend avoiding the block surface portion and restricting mutation detection to genomic regions of high confidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.