Since the introduction of Metal-Insulator-Metal (MIM) absorbers, most of the structures demonstrated a narrowband absorption response which is not suitable for potential applications in photovoltaic systems, as it requires higher energy to enhance its performance. Very little research is being conducted in this direction; to address this issue, we exhibit a broadband solar absorber designed using a concentric GST ring resonator placed upon a silicon dioxide substrate layer with chromium used as a ground plane. It was analyzed using the finite element method. The design is also optimized by using a nonlinear parametric optimization algorithm. Comparatively less work has been focused on solar absorbers designed with the help of GST material, and here we have compared the effect of two different phases of GST, i.e., amorphous (aGST) and crystalline (cGST); the results indicate the higher performance of aGST phase. Parametric optimization has been adapted to identify the optimal design to attain high performance at minimal resources. The absorption response is angle insensitive for 0 to 60 degrees, and at the same time for both TE and TM modes, the design provides identical results, indicating the polarization-insensitive properties. The electric field intensity changes at the six peak wavelengths are also demonstrated for the authentication of the high performance. Thus, the proposed concentric GST ring resonator solar absorber can present a higher solar energy absorption rate than other solar structure designs. This design can be applied for improving the performance of photovoltaic systems.
An efficient diagonally symmetric infinity-shaped broadband solar absorber has been demonstrated in this research paper. The structure was developed with an infinity-shaped resonator made of titanium (Ti) and gallium arsenide (GaAs) at the base substrate layer to achieve absorption in a wideband spectrum under solar energy radiation, and absorption efficiencies were calculated employing the finite element method. The average solar energy absorption spectrum ranges from the ultraviolet to the mid-infrared regions, and 93.93% average absorption in this band is achieved. Moreover, bandwidths of 2800 and 1110 nm were observed, and, in these bands, we attained continuous absorption above 90% and 95%, respectively, with average absorption rates of 93.93% and 96.25%, respectively. Furthermore, based on this solar energy absorber, which was optimized after varying many design parameters, it is also observed that the developed design is angle-insensitive from 0° to 50° and polarization-insensitive from the results of the transverse electric (TE) and transverse magnetic (TM) modes. The developed infinity-shaped broadband solar absorber design is highly efficient and provides broadband absorptance that can be used as an absorber layer in solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.