By only storing a unique copy of duplicate data possessed by different data owners, deduplication can significantly reduce storage cost, and hence is used broadly in public clouds. When combining with confidentiality, deduplication will become problematic as encryption performed by different data owners may differentiate identical data which may then become not deduplicable. The Message-Locked Encryption (MLE) is thus utilized to derive the same encryption key for the identical data, by which the encrypted data are still deduplicable after being encrypted by different data owners. As keys may be leaked over time, re-encrypting outsourced data is of paramount importance to ensure continuous confidentiality, which, however, has not been well addressed in the literature. In this paper, we design SEDER, a SEcure client-side Deduplication system enabling Efficient Re-encryption for cloud storage by (1) leveraging all-or-nothing transform (AONT), (2) designing a new delegated re-encryption (DRE), and (3) proposing a new proof of ownership scheme for encrypted cloud data (PoWC). Security analysis and experimental evaluation validate security and efficiency of SEDER, respectively.
Combating the OS-level malware is a very challenging problem as this type of malware can compromise the operating system, obtaining the kernel privilege and subverting almost all the existing anti-malware tools. This work aims to address this problem in the context of mobile devices. As real-world malware is very heterogeneous, we narrow down the scope of our work by especially focusing on a special type of OS-level malware that always corrupts user data. We have designed mobiDOM, the first framework that can combat the OS-level data corruption malware for mobile computing devices. Our mobiDOM contains two components, a malware detector and a data repairer. The malware detector can securely and timely detect the presence of OS-level malware by fully utilizing the existing hardware features of a mobile device, namely, flash memory and Arm TrustZone. Specifically, we integrate the malware detection into the flash translation layer (FTL), a firmware layer embedded into the flash storage hardware, which is inaccessible to the OS; in addition, we run a trusted application in the Arm TrustZone secure world, which acts as a user-level manager of the malware detector. The FTL-based malware detection and the TrustZone-based manager can communicate with each other stealthily via steganography. The data repairer can allow restoring the external storage to a healthy historical state by taking advantage of the out-of-place-update feature of flash memory and our malware-aware garbage collection in the FTL. Security analysis and experimental evaluation on a real-world testbed confirm the effectiveness of mobiDOM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.