Consideration is given to a basic food chain model satisfying the trophic time diversification hypothesis which translates the model into a singularly perturbed system of three time scales. It is demonstrated that in some realistic system parameter region, the model has a unimodal or logistic-like Poincare return map when the singular parameter for the fastest variable is at the limiting value 0. It is also demonstrated that the unimodal map goes through a sequence of period-doubling bifurcations to chaos. The mechanism for the creation of the unimodal criticality is due to the existence of a junction-fold point [B. Deng, J. Math. Biol. 38, 21-78 (1999)]. The fact that junction-fold points are structurally stable and the limiting structures persist gives us a rigorous but dynamical explanation as to why basic food chain dynamics can be chaotic. (c) 2001 American Institute of Physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.