(LM) is an important food borne pathogen responsible for listeriosis. Further, LM is an etiological agent associated with life threatening conditions like meningitis and encephalitis. Biofilm forming and drug resistant LM may potentially become difficult to treat infections and hence effective controlling measures are required to prevent LM infections. In view of this, the present study evaluated an anti-listerial potential of edible brown seaweed, , by disc diffusion and micro-dilution methods. The results of the present study suggested that the anti-listerial activity of various phlorotannins isolated form were in the range of 16-256 µg/ml. Among the phlorotannins isolated, fucofuroeckol-A (FAA) exhibited the highest anti-listerial potential (MIC range 16-32 µg/ml) against LM strains tested. Further, in checker board synergy assays, FFA-streptomycin combination exhibited significant synergy (fractional inhibitory concentration index, ∑FIC < 0.5) against aminoglycoside resistant clinical strains of LM. The results of the present study suggested the potential use of edible seaweed as a source of natural phlorotannins to control food borne pathogenic infections.
Background: Cutaneous bacterial pathogens including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Propionibacterium acnes are often involved in acne vulgaris. The currently available therapeutic option for these skin pathogens is an antibiotic treatment, resulting in the emergence of antibiotic-resistant bacteria. The objective of this study was to discover an alternative antibacterial agent with lower side effect from marine algae. Results: The ethanolic extract of edible brown algae Ishige okamurae exhibits potent antibacterial activity against cutaneous bacterial pathogens. Among the ethanol soluble fractions, the n-hexane (Hexane)-soluble fraction exhibited the strongest antibacterial activity against the pathogens with MIC values ranging 64 to 512 μg/mL and with minimum bactericidal concentration values ranging 256 to 2048 μg/mL. Furthermore, the combination with Hexane fraction and antibiotics (ceftazidime, ciprofloxacin, and meropenem) exhibited synergistic effect. Conclusion: This study revealed that the I. okamurae extract exhibited a synergistic antibacterial effect against acnerelated cutaneous bacterial pathogens acquired antibiotic resistant. Thus, the results of the present study suggested that the edible seaweed extract will be a promising antibacterial therapeutic agent against antibiotic-human skin pathogens and its infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.