This paper proposes a wavelet-based cerebellar model arithmetic controller neural network (called WCMAC) and develops an adaptive supervisory WCMAC control (SWC) scheme for nonlinear uncertain systems. The WCMAC is modified from the traditional CMAC for obtaining high approximation accuracy and convergent rate using the advantages of wavelet functions and fuzzy TSK-model. For nonlinear uncertain systems, a PD-type WCMAC controller with filter is constructed to approximate an ideal control signal. The corresponding adaptive supervisory controller is used to recover the residual of approximation error. Finally, the adaptive SWC scheme is applied to chaotic system identification and control including Mackey-Glass timeseries prediction, control of inverted pendulum system, and control of Chua circuit system. These demonstrate the effectiveness of our adaptive SWC approach for nonlinear uncertain systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.