Pd-catalyzed cross-coupling reactions have become essential tools for the construction of carbon-carbon and carbon-heteroatom bonds. Over the last three decades, great efforts have been made with cross-coupling chemistry in the discovery, development, and commercialization of innovative new pharmaceuticals and agrochemicals (mainly herbicides, fungicides, and insecticides). In view of the growing interest in both modern crop protection and cross-coupling chemistry, this review gives a comprehensive overview of the successful applications of various Pd-catalyzed cross-coupling methodologies, which have been implemented as key steps in the synthesis of agrochemicals (on R&D and pilot-plant scales) such as the Heck, Suzuki, Sonogashira, Stille, and Negishi reactions, as well as decarboxylative, carbonylative, α-arylative, and carbon-nitrogen bond bond-forming cross-coupling reactions. Some perspectives and challenges for these catalytic coupling processes in the discovery of agrochemicals are briefly discussed in the final section. The examples chosen demonstrate that cross-coupling chemistry approaches open-up new, low-cost, and more efficient industrial routes to existing agrochemicals, and such methods also have the capability to lead the new generation of pesticides with novel modes of action for sustainable crop protection.
4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) is an important target for new bleaching herbicides discovery. As a continuous work to discover novel crop selective HPPD inhibitor, a series of 2-(aryloxyacetyl)cyclohexane-1,3-diones were rationally designed and synthesized by an efficient one-pot procedure using N,N'-carbonyldiimidazole (CDI), triethylamine, and acetone cyanohydrin in CHCl. A total of 58 triketone compounds were synthesized in good to excellent yields. Some of the triketones displayed potent in vitro Arabidopsis thaliana HPPD (AtHPPD) inhibitory activity. 2-(2-((1-Bromonaphthalen-2-yl)oxy)acetyl)-3-hydroxycyclohex-2-en-1-one, II-13, displayed high, broad-spectrum, and postemergent herbicidal activity at the dosage of 37.5-150 g ai/ha, nearly as potent as mesotrione against some weeds. Furthermore, II-13 showed good crop safety against maize and canola at the rate of 150 g ai/ha, indicating that II-13 might have potential as a herbicide for weed control in maize and canola fields. II-13 is the first HPPD inhibitor showing good crop safety toward canola.
The discovery of 4-hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) inhibitors has been an active area of research due to their great potential as herbicides for weed control. Starting from the binding mode of known inhibitors of HPPD, a series of HPPD inhibitors with new molecular scaffolds were designed and synthesized by hybridizing 2benzoylethen-1-ol and isoindoline-1,3-dione fragments. The results of the in vitro tests indicated that the newly synthesized compounds showed good HPPD inhibitory activity with IC 50 values against the recombinant Arabidopsis thaliana HPPD (AtHPPD) ranging from 0.0039 μM to over 1 μM. Most promisingly, compound 4ae, 2-benzyl-5-(5-hydroxy-1,3-dimethyl-1Hpyrazole-4-carbonyl)isoindoline-1,3-dione, showed the highest AtHPPD inhibitory activity with a K i value of 3.92 nM, making it approximately 10 times more potent than pyrasulfotole (K i = 44 nM) and slightly more potent than mesotrione (K i = 4.56 nM). In addition, the cocrystal structure of the AtHPPD−4ae complex was successfully resolved at a resolution of 1.8 Å. The Xray diffraction analysis indicated that the two carbonyl groups of 2-benzoylethen-1-ol formed a bidentate chelating interaction with the metal ion, while the isoindoline-1,3-dione moiety formed pronounced π−π stacking interactions with Phe381 and Phe424. Moreover, water-mediated hydrogen bonding interactions were observed between Asn282 and the nitrogen atoms of the pyrazole ring of 4ae. The above results showed that the pyrazole-isoindoline-1,3-dione hybrid is a promising scaffold for developing HPPD inhibitors.
4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) has been identified as one of the most significant targets in herbicide discovery for resistant weed control. In a continuing effort to discover potent novel HPPD inhibitors, we adopted a ring-expansion strategy to design a series of novel pyrazole−quinazoline-2,4-dione hybrids based on the previously discovered pyrazole−isoindoline-1,3-dione scaffold. One compound, 3-(2-chlorophenyl)-6-(5-hydroxy-1,3-dimethyl-1H-pyrazole-4-carbonyl)-1,5-dimethylquinazoline-2,4(1H,3H)-dione (9bj), displayed excellent potency against AtHPPD, with an IC 50 value of 84 nM, which is approximately 16-fold more potent than pyrasulfotole (IC 50 = 1359 nM) and 2.7-fold more potent than mesotrione (IC 50 = 226 nM). Furthermore, the co-crystal structure of the AtHPPD−9bj complex (PDB ID 6LGT) was determined at a resolution of 1.75 Å. Similar to the existing HPPD inhibitors, compound 9bj formed a bidentate chelating interaction with the metal ion and a π−π stacking interaction with Phe381 and Phe424. In contrast, o-chlorophenyl at the N3 position of quinazoline-2,4-dione with a double conformation was surrounded by hydrophobic residues (Met335, Leu368, Leu427, Phe424, Phe392, and Phe381). Remarkably, the greenhouse assay indicated that most compounds displayed excellent herbicidal activity (complete inhibition) against at least one of the tested weeds at the application rate of 150 g of active ingredient (ai)/ha. Most promisingly, compounds 9aj and 9bi not only exhibited prominent weed control effects with a broad spectrum but also showed very good crop safety to cotton, peanuts, and corn at the dose of 150 g of ai/ha.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.