In order to realize that the fuze micro system has both high security and miniaturization characteristics, the spark gap research of Micro-Electro-Mechanical System safety system is carried out. So that to solve the safe and reliable function of the spark gap switch under the low power supply voltage (35 V) of the fuze micro system, the gas gap size and electrode radius are shown to significantly affect the gas breakdown voltage using streamer theory. Based on these results, a spark gap switch with triggering electrodes is designed. The triggering electrode gap is 2 μm and the main electrode gap is 10 μm. A spark gap switch test circuit is designed based on the RLC circuit. Through finite element simulation, it is verified that the gas breakdown voltage increases nonlinearly with increasing gap size. Pre-breakdown spark gap switches were fabricated based on the surface silicon process and tested. The test results show that the conduction voltage values of the triggering electrode and the main electrode are basically consistent with the simulation and calculation results. The breakdown voltage of the main electrode can be greatly reduced by applying a certain voltage to the triggering electrode, realize the reliable function in the micro fuze system.
A low-driving energy and bistable recoverable MEMS safety and arming device (S&A), based on microcasting technology and deep silicon etching technology, is proposed to meet safety system requirements. A force–electromagnetic combination solution is constructed for the Si MEMS S&A, with parameters and strength verified, ultimately achieving an S&A size of (13 × 13 × 0.4) mm. Additionally, a low-driving energy U-shaped electromagnetic coil (USEC) model is designed using microcasting technology, and an electrical–magnetic–mechanical coupling mathematical model is established to explore the relationship between design parameters and driving capacity and reliability. With a driving power of 8 V/0.5 A, the model achieves a stable electromagnetic driving force of 15 mN with a travel distance of 0.5 mm. Finally, the fabrication and testing of the USEC and S&A are carried out, with driving capability and S&A disarming ability tests conducted to verify the feasibility of the system design. Compared to the existing S&A, this scheme has the advantages of low-driving energy, recoverability, fast response speed, and strong adaptability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.