In order to monitor the crack tip propagation of aluminum alloy, this study investigates the variation of the spectrum characteristics of a fiber Bragg grating (FBG), combined with an analysis of the spectrum simulation. The results identify the location of the subordinate peak as significantly associated with the strain distribution along the grating, corresponding to the different plastic zones ahead of the crack tip with various crack lengths. FBG sensors could observe monotonic and cyclic plastic zones ahead of the crack tip, with the quadratic strain distribution along the grating at the crack tip-FBG distance of 1.2 and 0.7 mm, respectively. FBG sensors could examine the process zones ahead of the crack tip with the cubic strain distribution along the grating at the crack tip-FBG distance of 0.5 mm. The spectrum oscillation occurs as the crack approaches the FBG where the highly heterogeneous strain is distributed. Another idea is to use a finite element method (FEM), together with a T-matrix method, to analyze the reflection intensity spectra of FBG sensors for various crack sizes. The described crack propagation detection system may apply in structural health monitoring.
We propose a peak seeking algorithm to extract the damage characteristic-variation of central wavelength to monitor the crack damage status in aluminum alloy plates using surface bonded fiber Bragg grating (FBG) sensors. The FBG sensors are sensitive to the uniform and non-uniform strain distribution along their longitudinal direction, and the effect appears in the power spectrum of the reflected light from the gauge section. In this paper, we propose a fast-self-adaptive multi-peak seeking algorithm to detect the central wavelength shifting of the FBG reflection spectrum with the crack propagation. The proposed peak searching algorithm results point to a significant improvement compared to other conventional methods. Then the central wavelength shifting is applied to explain the crack propagation behavior of the aluminum plates under quasi-static tensile test conditions. The different damages feature changing intervals which are associated with the crack position and the FBGs location, demonstrating that central wavelength shifting performs as an indicator to detect structural crack damage.
a b s t r a c tThe problem of a screw dislocation interacting with a core-shell nanowire (coated nanowire) containing interface effects (interface stresses) is first investigated. The interaction energy and the interaction force are calculated. The interaction force and the equilibrium position of the dislocation are examined for variable parameters (interface stress and material mismatch). The influence of the core-shell nanowire and the interface stresses on the interaction between two screw dislocations is also considered. The results show that the impact of the interface stresses on the motion and the equilibrium position of the dislocation near the core-shell nanowire is very significant when the radius of the nanowire is reduced to nanometer scale.
a b s t r a c tDislocation mobility and stability in inclusions can affect the mechanical behaviors of the composites. In this paper, the problem of an edge dislocation located within a nanoscale cylindrical inclusion incorporating interface stress is first considered. The explicit expression for the image force acting on the edge dislocation is obtained by means of a complex variable method. The influence of the interface effects and the size of the inclusion on the image force is evaluated. The results indicate that the impact of interface stress on the image force and the equilibrium positions of the edge dislocation inside the inclusion becomes remarkable when the radius of the inclusion is reduced to nanometer scale. The force acting on the edge dislocation produced by the interface stress will increase with the decrease of the radius of the inclusion and depends on the inclusion size which differs from the classical solution. The stability of the dislocation inside a nanoscale inclusion is also analyzed. The condition of the dislocation stability and the critical radius of the inclusion are revised for considering interface stresses.
Damage detection using an FBG sensor is a critical process for an assessment of any inspection technology classified as structural health monitoring (SHM). FBG signals containing noise in experiments are developed to detect flaws. In this paper, we propose a novel signal denoising method that combines variational mode decomposition (VMD) and changed thresholding wavelets to denoise experimental and mixed signals. VMD is a recently introduced adaptive signal decomposition algorithm. Compared with traditional empirical mode decomposition (EMD), and it is well founded theoretically and more robust to noise samples. First, input signals were broken down into a given number of K band-limited intrinsic mode functions (BLIMFs) by VMD. For the purpose of avoiding the impact of overbinning or underbinning on VMD denoising, the mixed signals, which were obtained by adding different signal/noise ratio (SNR) noises to the experimental signals, were designed to select the best decomposition number K and data-fidelity constraint parameter α. After that, the realistic experimental signals were processed using four denoising algorithms to evaluate denoising performance. The results show that, upon adding additional noisy signals and realistic signals, the proposed algorithm delivers excellent performance over the EMD-based denoising method and discrete wavelet transform filtering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.