Developing hippocampal neurons in microisland culture undergo rapid and extensive transmitter release-dependent depression of evoked (phasic) excitatory synaptic activity in response to 1 sec trains of 20 Hz stimulation. Although evoked phasic release was attenuated by repeated stimuli, asynchronous (miniature like) release continued at a high rate equivalent to ϳ2.8 readily releasable pools (RRPs) of quanta/sec. Asynchronous release reflected the recovery and immediate release of quanta because it was resistant to sucroseinduced depletion of the RRP. Asynchronous and phasic release appeared to compete for a common limited supply of release-ready quanta because agents that block asynchronous release, such as EGTA-AM, led to enhanced steady-state phasic release, whereas prolongation of the asynchronous release time course by LiCl delayed recovery of phasic release from depression. Modeling suggested that the resistance of asynchronous release to depression was associated with its ability to out-compete phasic release for recovered quanta attributable to its relatively low release rate (up to 0.04/msec per vesicle) stimulated by bulk intracellular Ca 2ϩ concentration ([ Ca 2ϩ ] i ) that could function over prolonged intervals between successive stimuli. Although phasic release was associated with a considerably higher peak rate of release (0.4/msec per vesicle), the [Ca 2ϩ ] i microdomains that trigger it are brief (1 msec), and with asynchronous release present, relatively few quanta can accumulate within the RRP to be available for phasic release. We conclude that despite depression of phasic release during train stimulation, transmission can be maintained at a near-maximal rate by switching to an asynchronous mode that takes advantage of a bulk presynaptic [Ca 2ϩ ] i .
Summary Odors elicit distributed activation of glomeruli in the olfactory bulb (OB). Crosstalk between co-active glomeruli has been proposed to perform a variety of computations, facilitating efficient extraction of sensory information by the cortex. Dopaminergic/GABAergic cells in the OB, which can be identified by their expression of the dopamine transporter (DAT), provide the earliest opportunity for such crosstalk. Here we show in mice that DAT+ cells carry concentration dependent odor signals and broadcast focal glomerular inputs throughout the OB to cause suppression of mitral/tufted (M/T) cell firing, an effect that is mediated by the external tufted (ET) cells coupled to DAT+ cells via chemical and electrical synapses. We find that DAT+ cells implement gain control and decorrelate odor representations in the M/T cell population. Our results further indicate that ET cells are gatekeepers of glomerular output and prime determinants of M/T responsiveness.
The central amygdala (CeA) has a key role in learning and expression of defensive responses. Recent studies indicate that somatostatinexpressing (SOM ϩ ) neurons in the lateral division of the CeA (CeL) are essential for the acquisition and recall of conditioned freezing behavior, which has been used as an index of defensive response in laboratory animals during Pavlovian fear conditioning. However, how exactly these neurons participate in fear conditioning and whether they contribute to the generation of defensive responses other than freezing remain unknown. Here, using fiber-optic photometry combined with optogenetic and molecular techniques in behaving mice, we show that SOM ϩ CeL neurons are activated by threat-predicting sensory cues after fear conditioning and that activation of these neurons suppresses ongoing actions and converts an active defensive behavior to a passive response. Furthermore, inhibition of these neurons using optogenetic or molecular methods promotes active defensive behaviors. Our results provide the first in vivo evidence that SOM ϩ neurons represent a CeL population that acquires learning-dependent sensory responsiveness during fear conditioning and furthermore reveal an important role of these neurons in gating passive versus active defensive behaviors in animals confronted with threat.
Although the medial prefrontal cortex (mPFC) is classically defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD), the nature of information transfer between MD and mPFC is poorly understood. In sensory thalamocortical pathways, thalamic recruitment of feedforward inhibition mediated by fast-spiking, putative parvalbumin-expressing (PV) interneurons is a key feature that enables cortical neurons to represent sensory stimuli with high temporal fidelity. Whether a similar circuit mechanism is in place for the projection from the MD (a higher-order thalamic nucleus that does not receive direct input from the periphery) to the mPFC is unknown. Here we show in mice that inputs from the MD drive disynaptic feedforward inhibition in the dorsal anterior cingulate cortex (dACC) subregion of the mPFC. In particular, we demonstrate that axons arising from MD neurons directly synapse onto and excite PV interneurons that in turn mediate feedforward inhibition of pyramidal neurons in layer 3 of the dACC. This feedforward inhibition in the dACC limits the time window during which pyramidal neurons integrate excitatory synaptic inputs and fire action potentials, but in a manner that allows for greater flexibility than in sensory cortex. These findings provide a foundation for understanding the role of MD-PFC circuit function in cognition.
Recent studies indicate that the lateral subdivision of the central amygdala (CeL) is essential for fear learning. Specifically, fear conditioning induces cell-type-specific synaptic plasticity in CeL neurons that is required for the storage of fear memories. The CeL also controls fear expression by gating the activity of the medial subdivision of the central amygdala (CeM), the canonical amygdala output to areas that mediate defensive responses. In addition to the connection with CeM, the CeL sends long-range projections to innervate extra-amygdala areas. However, the long-range projection CeL neurons have not been well characterized, and their role in fear regulation is unknown. Here we show in mice that a subset of CeL neurons directly project to the midbrain periaqueductal gray (PAG) and the paraventricular nucleus of the thalamus, two brain areas implicated in defensive behavior. These long-range projection CeL neurons are predominantly somatostatin-positive (SOM ϩ ) neurons, which can directly inhibit PAG neurons, and some of which innervate both the PAG and paraventricular nucleus of the thalamus. Notably, fear conditioning potentiates excitatory synaptic transmission onto these long-range projection CeL neurons. Thus, our study identifies a subpopulation of SOM ϩ CeL neurons that may contribute to fear learning and regulate fear expression independent of CeM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.