These findings disclose a novel regulatory pathway that is composed of HRCR, miR-223, and ARC. Modulation of their levels provides an attractive therapeutic target for the treatment of cardiac hypertrophy and heart failure.
Myocardial infarction is a leading cause of mortality worldwide. Here we report that modulation of microRNA-499 (miR-499) levels affects apoptosis and the severity of myocardial infarction and cardiac dysfunction induced by ischemia-reperfusion. We found that both the α- and β-isoforms of the calcineurin catalytic subunit are direct targets of miR-499 and that miR-499 inhibits cardiomyocyte apoptosis through its suppression of calcineurin-mediated dephosphorylation of dynamin-related protein-1 (Drp1), thereby decreasing Drp1 accumulation in mitochondria and Drp1-mediated activation of the mitochondrial fission program. We also found that p53 transcriptionally downregulates miR-499 expression. Our data reveal a role for miR-499 in regulating the mitochondrial fission machinery and we suggest that modulation of miR-499 levels may provide a therapeutic approach for treating myocardial infarction.
Rationale: Sustained cardiac hypertrophy is often accompanied by maladaptive cardiac remodeling leading to decreased compliance and increased risk for heart failure. Maladaptive hypertrophy is considered to be a therapeutic target for heart failure. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) have various biological functions and have been extensively investigated in past years.Objective: We identified miR-489 and lncRNAs (cardiac hypertrophy related factor, CHRF) from hypertrophic cardiomyocytes. Here, we tested the hypothesis that miR-489 and CHRF can participate in the regulation of cardiac hypertrophy in vivo and in vitro.
Methods and Results:A microarray was performed to analyze miRNAs in response to angiotensin II treatment, and we found miR-489 was substantially reduced. Enforced expression of miR-489 in cardiomyocytes and transgenic overexpression of miR-489 both exhibited reduced hypertrophic response on angiotensin II treatment. We identified myeloid differentiation primary response gene 88 (Myd88) as a miR-489 target to mediate the function of miR-489 in cardiac hypertrophy. Knockdown of Myd88 in cardiomyocytes and Myd88-knockout mice both showed attenuated hypertrophic responses. Furthermore, we explored the molecular mechanism by which miR-489 expression is regulated and found that an lncRNA that we named CHRF acts as an endogenous sponge of miR-489, which downregulates miR-489 expression levels. CHRF is able to directly bind to miR-489 and regulate Myd88 expression and hypertrophy.
Conclusions:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.