Evidence of a nonlinear transition from mitigation to suppression of the edge localized mode (ELM) by using resonant magnetic perturbations (RMPs) in the EAST tokamak is presented. This is the first demonstration of ELM suppression with RMPs in slowly rotating plasmas with dominant radio-frequency wave heating. Changes of edge magnetic topology after the transition are indicated by a gradual phase shift in the plasma response field from a linear magneto hydro dynamics modeling result to a vacuum one and a sudden increase of three-dimensional particle flux to the divertor. The transition threshold depends on the spectrum of RMPs and plasma rotation as well as perturbation amplitude. This means that edge topological changes resulting from nonlinear plasma response plays a key role in the suppression of ELM with RMPs. DOI: 10.1103/PhysRevLett.117.115001 Magnetic reconnection and the resultant topological change play an important role in plasma dynamics in both laboratory and space plasma physics research. The formation of an edge stochastic magnetic field caused by resonant magnetic perturbations (RMPs) is believed to be the reason for the suppression of periodic crash events near the plasma edge known as the edge localized mode (ELM) observed in the DIII-D tokamak [1]. The ELM causes transient heat loads to the plasma facing components and may degrade them on the next generation fusion device like ITER [2]. The reduction of free energy in the edge pressure gradient and current because of field stochasticity moves the plasma into a stable regime against the ELM [3]. This successful experiment motivated ELM control using RMPs in many other tokamaks [4][5][6][7]. However, the plasma response effect usually shields the external applied RMPs and may significantly reduce the magnetic field stochasticity [8][9][10][11], which makes this mechanism questionable. Different from topological change, the linear peelinglike magneto hydro dynamics (MHD) response has been found to play an important role in ELM control [12][13][14]. Nonlinear plasma response has been observed in the JET totamak [15]. The possible formation of a magnetic island near the plasma edge [16] with a toroidal Fourier mode number n ¼ 1 during ELM suppression by using n ¼ 2 RMP has been recently observed on DIII-D [17]. However, the key difference between ELM suppression and mitigation and the different roles of linear and nonlinear plasma response on ELM suppression are still not clear.In this Letter, we report the first observation of full ELM suppression using low n RMPs in slowly rotating plasmas with dominant radio-frequency (rf) wave heating, which is potentially important for the application of this method for a future fusion device. This is the first observation of full ELM suppression using RMPs in the medium plasma collisionality regime in EAST, and it expands beyond the previous observations of ELM suppression on DIII-D [1,3] and KSTAR [7]. It is found that not only the formation of a magnetic island near the edge [17] but also a critical leve...
The EAST research program aims to demonstrate steady-state long-pulse advanced high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. Since last IAEA FEC, EAST has been upgraded with all ITER-relevant auxiliary heating and current drive systems, enabling the investigation of plasma profile control by coupling/integration of various combinations. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and maintained at relatively high density, even up to n e ~ 4.5 × 10 19 m-3 , where a current drive effect is still observed. Significant progress has been achieved on EAST, including: i). Demonstration of a steady-state scenario (fully non-inductive with V loop ~ 0.0V at high β P ~ 1.8 and high performance (H 98,y2 > 1.0) in upper single-null (ε ~ 1.6) configuration with the tungsten divertor; ii) Discovery of a stationary ELM-stable H-mode regime with 4.6 GHz LHCD; iii) achievement of ELM suppression in slowly-rotating H-mode plasma with the application of n = 1 and 2 RMPs.
The recent EAST experimental progress since the last IAEA FEC in 2016 is presented. First demonstration of >100 seconds time scale long-pulse steady-state scenario with a good plasma performance (H98(y2) ~ 1.1) and a good control of impurity and heat exhaust with the tungsten divertor has been successfully achieved on EAST using the pure RF power heating and current drive. The extended operation regimes have been obtained (βP~2.5 & βN~1.9 of using RF&NB and βP~1.9 & βN~1.5). High bootstrap current fraction up to 47% was achieved with q95~6.0-7.0. The interaction effect between the ECH and two LHW systems has been investigated for enhanced current drive and improved confinement quality. ELM suppression using the n= 2 RMPs has been achieved at q95 (≈ 3.2-3.7) with standard type-I ELMy H-mode operational window in EAST. Reduction of the peak heat flux on the divertor was demonstrated using the active radiation feedback control. An increase in the total heating power and improvement of the plasma confinement are expected using a 0-D model prediction for higher bootstrap fraction. Towards long pulse, high bootstrap current fraction operation, a new lower ITER-like tungsten divertor with active watercooling will be installed, together with further increase and improvement of heating and current drive capability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.