The DArk Matter Particle Explorer (DAMPE), one of the four scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Sciences, is a general purpose high energy cosmic-ray and gamma-ray observatory, which was successfully launched on December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE scientific objectives include the study of galactic cosmic rays up to $\sim 10$ TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the search for dark matter signatures in their spectra. In this paper we illustrate the layout of the DAMPE instrument, and discuss the results of beam tests and calibrations performed on ground. Finally we present the expected performance in space and give an overview of the mission key scientific goals.Comment: 45 pages, including 29 figures and 6 tables. Published in Astropart. Phy
The precise measurement of the spectrum of protons, the most abundant component of the cosmic radiation, is necessary to understand the source and acceleration of cosmic rays in the Milky Way. This work reports the measurement of the cosmic ray proton fluxes with kinetic energies from 40 GeV to 100 TeV, with 2 1 / 2 years of data recorded by the DArk Matter Particle Explorer (DAMPE). This is the first time that an experiment directly measures the cosmic ray protons up to~100 TeV with high statistics. The measured spectrum confirms the spectral hardening at~300 GeV found by previous experiments and reveals a softening at~13.6 TeV, with the spectral index changing from~2.60 to~2.85. Our result suggests the existence of a new spectral feature of cosmic rays at energies lower than the so-called knee and sheds new light on the origin of Galactic cosmic rays.
We continue our systematic statistical study of various components of gamma-ray burst (GRB) optical light curves. We decompose the early onset bump and the late re-brightening bump with empirical fits and analyze their statistical properties. Among the 146 GRBs that have well-sampled optical light curves, the onset and re-brightening bumps are observed in 38 and 26 GRBs, respectively. It is found that the typical rising and decaying slopes for both the onset and re-brightening bumps are ∼1.5 and ∼−1.15, respectively. No early onset bumps in the X-ray band are detected to be associated with the optical onset bumps, while an X-ray re-brightening bump is detected for half of the re-brightening optical bumps. The peak luminosity is anti-correlated with the peak time L p ∝ t −1.81±0.32 p for the onset bumps and L p ∝ t −0.83±0.17 p for the re-brightening bumps. Both L p and the isotropic energy release of the onset bumps are correlated with E γ,iso , whereas no similar correlation is found for the re-brightening bumps. These results suggest that the afterglow onset bumps are likely due to the deceleration of the GRB fireballs. Taking the onset bumps as probes for the properties of the fireballs and their ambient medium, we find that the typical power-law index of the relativistic electrons is 2.5 and the medium density profile behaves as n ∝ r −1 within the framework of the synchrotron external shock models. With the medium density profile obtained from our analysis, we also confirm the correlation between the initial Lorentz factor (Γ 0 ) and E iso,γ in our previous work. The jet component that produces the re-brightening bump seems to be on-axis and independent of the prompt emission jet component. Its typical kinetic energy budget would be about one order of magnitude larger than the prompt emission component, but with a lower Γ 0 , typically several tens.
Several groups have analyzed the publicly-available Fermi-LAT data and reported a spatially extended γ−ray excess of around 1 − 3 GeV from the region surrounding the Galactic Center that might originate from annihilation of dark matter particles with a rest mass mχ ∼ 30 − 40 GeV. In this work we examine the role of the diffuse Galactic gamma ray emission (DGE) templates played in suppressing the GeV excess. For such a purpose, we adopt in total 128 background templates that have been generated by Ackermann et al. [1] in the study of the Fermi-LAT observations of the diffuse gamma ray emission considering the effects of cosmic rays and the interstellar medium. The possible GeV excess, assumed to follow the spatial distribution of the prompt gamma-rays produced in the annihilation of dark matter particles taking a generalized NFW profile with an inner slope α = 1.2, has been analyzed in some regions of interest. The introduction of such an additional component centered at the Galactic center is found to have improved the goodness of fit to the data significantly in all background template models regardless of whether the excess spectrum is fixed or not. Our results thus suggest that the presence of a statistically significant GeV excess in the inner Galaxy is robust thought its spectrum depends on the DGE model adopted in the analysis. The possible physical origin of the GeV excess component is discussed and in the dark matter model the annihilation cross section of such particles is evaluated.PACS numbers: 98.70. Rz, 95.35.+d
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.