Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L., Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T., Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P., Vinther, B. M., Walker, M. J. C., Wheatley, J. J., Winstrup, M. (2014). A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews, 106, 14-28Due to their outstanding resolution and well-constrained chronologies, Greenland ice-core records provide a master record of past climatic changes throughout the Last Interglacial?Glacial cycle in the North Atlantic region. As part of the INTIMATE (INTegration of Ice-core, MArine and TErrestrial records) project, protocols have been proposed to ensure consistent and robust correlation between different records of past climate. A key element of these protocols has been the formal definition and ordinal numbering of the sequence of Greenland Stadials (GS) and Greenland Interstadials (GI) within the most recent glacial period. The GS and GI periods are the Greenland expressions of the characteristic Dansgaard?Oeschger events that represent cold and warm phases of the North Atlantic region, respectively. We present here a more detailed and extended GS/GI template for the whole of the Last Glacial period. It is based on a synchronization of the NGRIP, GRIP, and GISP2 ice-core records that allows the parallel analysis of all three records on a common time scale. The boundaries of the GS and GI periods are defined based on a combination of stable-oxygen isotope ratios of the ice (?18O, reflecting mainly local temperature) and calcium ion concentrations (reflecting mainly atmospheric dust loading) measured in the ice. The data not only resolve the well-known sequence of Dansgaard?Oeschger events that were first defined and numbered in the ice-core records more than two decades ago, but also better resolve a number of short-lived climatic oscillations, some defined here for the first time. Using this revised scheme, we propose a consistent approach for discriminating and naming all the significant abrupt climatic events of the Last Glacial period that are represented in the Greenland ice records. The final product constitutes an extended and better resolved Greenland stratotype sequence, against which other proxy records can be compared and correlated. It also provides a more secure basis for investigating the dynamics and fundamental causes of these climatic perturbationspublishersversionPeer reviewe
[1] We present a new common stratigraphic timescale for the North Greenland Ice Core Project (NGRIP) and GRIP ice cores. The timescale covers the period 7.9-14.8 kyr before present and includes the Bølling, Allerød, Younger Dryas, and early Holocene periods. We use a combination of new and previously published data, the most prominent being new high-resolution Continuous Flow Analysis (CFA) impurity records from the NGRIP ice core. Several investigators have identified and counted annual layers using a multiparameter approach, and the maximum counting error is estimated to be up to 2% in the Holocene part and about 3% for the older parts. These counting error estimates reflect the number of annual layers that were hard to interpret, but not a possible bias in the set of rules used for annual layer identification. As the GRIP and NGRIP ice cores are not optimal for annual layer counting in the middle and late Holocene, the timescale is tied to a prominent volcanic event inside the 8.2 kyr cold event, recently dated in the DYE-3 ice core to 8236 years before A. D. 2000 (b2k) with a maximum counting error of 47 years. The new timescale dates the Younger Dryas-Preboreal transition to 11,703 b2k, which is 100-150 years older than according to the present GRIP and NGRIP timescales. The age of the transition matches the GISP2 timescale within a few years, but viewed over the entire 7.9-14.8 kyr section, there are significant differences between the new timescale and the GISP2 timescale. The transition from the glacial into the Bølling interstadial is dated to 14,692 b2k. The presented timescale is a part of a new Greenland ice core chronology common to the DYE-3, GRIP, and NGRIP ice cores, named the Greenland Ice Core Chronology 2005 (GICC05). The annual layer thicknesses are observed to be log-normally distributed with good approximation, and compared to the early Holocene, the mean accumulation rates in the Younger Dryas and Bølling periods are found to be 47 ± 2% and 88 ± 2%, respectively.
Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing.
The Greenland Ice Core Chronology 2005 (GICC05) is a time scale based on annual layer counting of high-resolution records from Greenland ice cores. Whereas the Holocene part of the time scale is based on various records from the DYE-3, the GRIP, and the NorthGRIP ice cores, the glacial part is solely based on NorthGRIP records. Here we present an 18 ka extension of the time scale such that GICC05 continuously covers the past 60 ka. The new section of the time scale places the onset of Greenland Interstadial 12 (GI-12) at 46.9±1.0 ka b2k (before year AD 2000), the North Atlantic Ash Zone II layer in GI-15 at 55.4±1.2 ka b2k, and the onset of GI-17 at 59.4±1.3 ka b2k. The error estimates are derived from the accumulated number of uncertain annual layers. In the 40–60 ka interval, the new time scale has a discrepancy with the Meese-Sowers GISP2 time scale of up to 2.4 ka. Assuming that the Greenland climatic events are synchronous with those seen in the Chinese Hulu Cave speleothem record, GICC05 compares well to the time scale of that record with absolute age differences of less than 800 years throughout the 60 ka period. The new time scale is generally in close agreement with other independently dated records and reference horizons, such as the Laschamp geomagnetic excursion, the French Villars Cave and the Austrian Kleegruben Cave speleothem records, suggesting high accuracy of both event durations and absolute age estimates
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.