Ammonia synthesis is the single most important chemical process in industry and has used the successful heterogeneous Haber-Bosch catalyst for over 100 years and requires processing under both high temperature (300-500 °C) and pressure (200-300 atm); thus, it has huge energy costs accounting for about 1-3% of human's energy consumption. Therefore, there has been a long and vigorous exploration to find a milder alternative process. Here, we demonstrate that by using an iron- and graphene-based catalyst, Fe@3DGraphene, hot (ejected) electrons from this composite catalyst induced by visible light in a wide range of wavelength up to red could efficiently facilitate the activation of N and generate ammonia with H directly at ambient pressure using light (including simulated sun light) illumination directly. No external voltage or electrochemical or any other agent is needed. The production rate increases with increasing light frequency under the same power and with increasing power under the same frequency. The mechanism is confirmed by the detection of the intermediate NH and also with a measured apparent activation energy only ∼1/4 of the iron based Haber-Bosch catalyst. Combined with the morphology control using alumina as the structural promoter, the catalyst retains its activity in a 50 h test.
A BiOCl-Bi2WO6 heterojunction with a chemically bonded interface was synthesized via a facile one-step solvothermal method. A series of characterization techniques (XRD, XPS, TEM, SEM, EDS etc.) confirmed the existence of a BiOCl-Bi2WO6 interface. The heterojunction yielded a higher photodegradation rate of Rhodamine B under visible light irradiation compared to its individual components. Theoretical studies based on density functional theory calculations indicated that the enhanced photosensitized degradation activity could be attributed to the favorable band offsets across the BiI-O-BiII bonded interface, leading to efficient interfacial charge carrier transfer. Our results reveal the photosensitized mechanism of BiOCl-Bi2WO6 heterojunctions and demonstrate their practical use as visible-light-driven photocatalytic materials.
Many of the compounds in drugs cannot be effectively delivered using current drug delivery techniques (e.g., pills and injections). Transdermal delivery is an attractive alternative, but it is limited by the extremely low permeability of the skin. As the primary barrier to transport is located in the upper tissue, MicroElectro-Mechanical-System (MEMS) technology provides novel means, such as microneedle array and PZT pump, in order to increase permeability of human skin with efficiency, safety and painless delivery, and to decrease the size of the pump. Microneedle array has many advantages, including minimal trauma at penetration site because of the small size of the needle, free from condition limitations, painless drug delivery, and precise control of penetration depth. These will promote the development of biomedical sciences and technology and make medical devices more humanized. So far, most of the insulin pumps being used are mechanical pumps. We present the first development of this novel technology, which can assemble the PZT pump and the microneedle array together for diabetes mellitus. The microneedle array based on a flexible substrate can be mounted on non-planar surface or even on flexible objects such as a human fingers and arms. The PZT pump can pump the much more precision drug accurately than mechanical pump and the overall size is much smaller than those mechanical pumps. The hollow wall straight microneedle array is fabricated on a flexible silicon substrate by inductively coupled plasma (ICP) and anisotropic wet etching techniques. The fabricated hollow microneedles are 200 lm in length and 30 lm in diameter. The microneedle array, which is built with onboard fluid pumps, has potential applications in the chemical and biomedical fields for localized chemical analysis, programmable drug-delivery systems, and very small, precise fluids sampling. The microneedle array has been installed in an insulin pump for demonstration and a leak free packaging is introduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.