Newborn microglia rapidly replenish the whole brain after selective elimination of most microglia (>99%) in adult mice. Previous studies reported that repopulated microglia were largely derived from microglial progenitor cells expressing nestin in the brain. However, the origin of these repopulated microglia has been hotly debated. In this study, we investigated the origin of repopulated microglia by a series of fate-mapping approaches. We first excluded the blood origin of repopulated microglia via parabiosis. With different transgenic mouse lines, we then demonstrated that all repopulated microglia were derived from the proliferation of the few surviving microglia (<1%). Despite a transient pattern of nestin expression in newly forming microglia, none of repopulated microglia were derived from nestin-positive non-microglial cells. In summary, we conclude that repopulated microglia are solely derived from residual microglia rather than de novo progenitors, suggesting the absence of microglial progenitor cells in the adult brain.
Retinitis pigmentosa (RP) is a photoreceptor-degenerative disease caused by various mutations and is characterized by death of rod photoreceptor cell followed by gradual death of cone photoreceptors. The molecular mechanisms that lead to rod and cone death are not yet fully understood. Neuroinflammation contributes to the progression of many chronic neurodegenerative disorders. However, it remains to be determined how microglia contribute to photoreceptor disruption in RP. In this study, we explored the role of microglia as a contributor to photoreceptor degeneration in the rd10 mouse model of RP. First, we demonstrated that microglia activation was an early alteration in RP retinas. Inhibition of microglia activation by minocycline reduced photoreceptor apoptosis and significantly improved retinal structure and function and visual behavior in rd10 mice. Second, we identified that minocycline exerted its neuroprotective effects through both anti-inflammatory and anti-apoptotic mechanisms. Third, we found that Cx3cr1 deficiency dysregulated microglia activation and subsequently resulted in increased photoreceptor vulnerability in rd10 mice, suggesting that the Cx3cl1/Cx3cr1 signaling pathway might protect against microglia neurotoxicity. We concluded that suppression of neuroinflammatory responses could be a potential treatment strategy aimed at improving photoreceptor survival in human RP.
Elucidating the origin of microglia is crucial for understanding their functions and homeostasis. Previous study has indicated that Nestin-positive progenitor cells differentiate into microglia and replenish the brain after depleting most brain microglia. Microglia have also shown the capacity to repopulate the retina after eliminating all retinal microglia. However, the origin(s) of repopulated retinal microglia is/are unknown. In this study, we aim to investigate the origins of repopulated microglia in the retina. Interestingly, we find that repopulated retinal microglia are not derived from Nestin-positive progenitor cells. Instead, they have two origins: the center-emerging microglia are derived from residual microglia in the optic nerve and the periphery-emerging microglia are derived from macrophages in the ciliary body/iris. Therefore, we have for the first time identified the extra-retinal origins of microglia in the adult mammalian retina by using a model of microglial repopulation, which may shed light on the target exploration of therapeutic interventions for retinal degenerative disorders.
Highlights d mrBMT and mrPB achieve nonself microglia replacement at the CNS-wide scale d mrMT allows foreign microglia to replace endogenous cells at the specified brain region d mrBMT and mrPB cells are derived from CCR2-positive BMCs and PBCs, respectively d mrBMT and mrPB cells are more macrophage-like, while mrMT cells are more microglia-like
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.