A group key agreement (GKA) protocol allows a set of users to establish a common secret via open networks. Observing that a major goal of GKAs for most applications is to establish a confidential channel among group members, we revisit the group key agreement definition and distinguish the conventional (symmetric) group key agreement from asymmetric group key agreement (ASGKA) protocols. Instead of a common secret key, only a shared encryption key is negotiated in an ASGKA protocol. This encryption key is accessible to attackers and corresponds to different decryption keys, each of which is only computable by one group member. We propose a generic construction of one-round ASGKAs based on a new primitive referred to as aggregatable signaturebased broadcast (ASBB), in which the public key can be simultaneously used to verify signatures and encrypt messages while any signature can be used to decrypt ciphertexts under this public key. Using bilinear pairings, we realize an efficient ASBB scheme equipped with useful properties. Following the generic construction, we instantiate a one-round ASGKA protocol tightly reduced to the decision Bilinear Diffie-Hellman Exponentiation (BDHE) assumption in the standard model.
Provable Data Possession (PDP) allows a file owner to outsource her files to a storage server such that a verifier can check the integrity of the outsourced file. Public verifiable PDP schemes allow any one other than the file owner to be a verifier. At the client side (file owner or verifier), a substantial number of modular exponentiations is often required. In this paper we make PDP more practical via proposing a protocol to securely outsource the (most generic) variable-exponent variable-base exponentiations in one untrusted program model. Our protocol demonstrates advantages in efficiency or privacy over existing protocols coping with only special cases in two or single untrusted program model. We then apply our generic protocol to Shacham-Waters PDP and a variant of Yuan-Yu PDP. The analyses show that our protocol makes PDP much more efficient at the client side.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.