There is a growing appreciation for the idea that bacterial utilization of host-derived lipids, including cholesterol, supports Mycobacterium tuberculosis (Mtb) pathogenesis. This has generated interest in identifying novel antibiotics that can disrupt cholesterol utilization by Mtb in vivo. Here we identify a novel small molecule agonist (V-59) of the Mtb adenylyl cyclase Rv1625c, which stimulates 3’, 5’-cyclic adenosine monophosphate (cAMP) synthesis and inhibits cholesterol utilization by Mtb. Similarly, using a complementary genetic approach that induces bacterial cAMP synthesis independent of Rv1625c, we demonstrate that inducing cAMP synthesis is sufficient to inhibit cholesterol utilization in Mtb. Although the physiological roles of individual adenylyl cyclase enzymes in Mtb are largely unknown, here we demonstrate that the transmembrane region of Rv1625c is required during cholesterol metabolism. Finally, the pharmacokinetic properties of Rv1625c agonists have been optimized, producing an orally-available Rv1625c agonist that impairs Mtb pathogenesis in infected mice. Collectively, this work demonstrates a role for Rv1625c and cAMP signaling in controlling cholesterol metabolism in Mtb and establishes that cAMP signaling can be pharmacologically manipulated for the development of new antibiotic strategies.
Combretastatin A-4 (CA4), a tubulin inhibitor, binds to the colchicine site of tubulin, inhibits tubulin polymerization, and leads to the apoptosis of tumor cells.However, the poor hydrophilicity and blood-brain barrier (BBB) penetration ability of CA4 hampers its application in the treatment of glioma. In this study, a novel combretastatin A-4 derivative (CA4D) was designed and developed, which was further conjugated with glucose via disulfide-bond-bridged (CA4D-SS-Glu) to enhance the BBB penetration capacity. The obtained CA4D-SS-Glu conjugate displayed a suitable water partition coefficient and the superior ability across BBB in vitro and in vivo. In addition, the CA4D-SS-Glu exhibited rapid redoxresponsive drug release in the presence of glutathione, enhanced in vitro cytotoxicity, and cell apoptosis. Our data further confirmed that CA4D-SS-Glu inhibited proliferation, and restrained migration via affecting microtubule stabilization. Additionally, the conjugate also showed the highest antiproliferative and antitumor action on glioma in vivo as compared to CA4D and CA4. Taken together, the novel CA4D-SS-Glu conjugate possess improved physicochemical property and BBB penetration ability, reduction triggered release of CA4D, and efficient antiproliferative activity. These results provided a novel and effective entry to the treatment of glioma.
Gliomas, the most lethal brain tumors, often exhibit resistance to conventional chemotherapy and/or radiotherapy. This study reveals that sertindole, a potent dopamine D2 receptor antagonist primarily designed as an antipsychotic medication for schizophrenia, effectively inhibits glioma progression. Our findings demonstrate that sertindole suppresses the proliferation of U251 and U87 tumor cells, impedes cell cycle progression in vitro, and curtails xenograft tumor growth in vivo. Moreover, we present compelling evidence demonstrating the ability of sertindole to enhance the cellular response to the chemotherapeutic agent temozolomide both in vitro and in vivo. Additionally, our findings reveal that sertindole effectively suppresses the self-renewal capacity and expression of stemness-associated genes, such as Nanog and Sox2, in glioma tumor cells and glioma stem cells. A mechanistic investigation demonstrated that sertindole enhances the formation of autophagosome-lysosome complexes while concurrently impeding autophagic flux through the inhibition of lysosomal hydrolytic enzymes CTSD and CTSB, ultimately resulting in decreased growth of tumor cells. In conclusion, our findings suggest that sertindole has the potential to develop into a potent antiglioma therapeutic agent.
Hepatitis B virus (HBV) infection remains a major global threat to human health worldwide. Recently, the Chinese medicines with antiviral properties and low toxicity have been a concern. In our previous study, Eupolyphaga sinensis Walker polysaccharide (ESPS) has been isolated and characterized, while its antiviral effect on HBV remained unclear. The anti-HBV activity of ESPS and its regulatory pathway were investigated in vitro and in vivo. The results showed that ESPS significantly inhibited the production of HBsAg, HBeAg, and HBV DNA in the supernatants of HepG2.2.15 in a dose-dependent manner; HBV RNA and core protein expression were also decreased by ESPS. The in vivo studies using HBV transgenic mice further revealed that ESPS (20 and 40 mg/kg/2 days) significantly reduced the levels HBsAg, HBeAg, and HBV DNA in the serum, as well as HBV DNA and HBV RNA in mice liver. In addition, ESPS activated the Toll-like receptor 4 (TLR4) pathway; elevated levels of IFN-β, TNF-α, and IL-6 in the serum were observed, indicating that the anti-HBV effect of ESPS was achieved by potentiating innate immunity function. In conclusion, our study shows that ESPS is a potential anti-HBV ingredient and is of great value in the development of new anti-HBV drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.