Canada's boreal forests and tundra ecosystems are responding to unprecedented climate change with implications for the global carbon (C) cycle and global climate. However, our ability to model the response of Canada's terrestrial ecosystems to climate change is limited and there has been no comprehensive, process-based assessment of Canada's terrestrial C cycle. We tailor the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC) to Canada and evaluate its C cycling performance against independent reference data. We utilize skill scores to assess model performance against reference data alongside benchmark scores that quantify the level of agreement between the reference data sets to aid in interpretation. Our results demonstrate CLASSIC's sensitivity to prescribed vegetation cover. They also show that the addition of five region-specific PFTs improves CLASSIC's skill at simulating the Canadian C cycle. CLASSIC performs well when tailored to Canada, falls within the range of the reference data sets, and meets or exceeds the benchmark scores for most C cycling processes. New regionspecific land cover products, well-informed plant functional type (PFT) parameterizations, and more detailed reference data sets will facilitate improvements to the representation of the terrestrial C cycle in regional and global land surface models (LSMs). Incorporating a parameterization for boreal disturbance processes and explicitly representing peatlands and permafrost soils will improve CLASSIC's future performance in Canada and other boreal regions. This is an important step toward a comprehensive process-based assessment of Canada's terrestrial C cycle and evaluating Canada's net C balance under climate change.
Climate change is rapidly altering composition, structure, and functioning of the boreal biome, across North America often broadly categorized into ecoregions. The resulting complex changes in different ecoregions present a challenge for efforts to accurately simulate carbon dioxide (CO2) and energy exchanges between boreal forests and the atmosphere with terrestrial ecosystem models (TEMs). Eddy covariance measurements provide valuable information for evaluating the performance of TEMs and guiding their development. Here, we compiled a boreal forest model benchmarking dataset for North America by harmonizing eddy covariance and supporting measurements from eight black spruce (Picea mariana)-dominated, mature forest stands. The eight forest stands, locating in six boreal ecoregions of North America, differ in stand characteristics, disturbance history, climate, permafrost conditions and soil properties. By compiling various data streams, the benchmarking dataset comprises data to parameterize, force, and evaluate TEMs. Specifically, it includes half-hourly, gap-filled meteorological forcing data, ancillary data essential for model parameterization, and half-hourly, gap-filled or partitioned component flux data on CO2 (net ecosystem production [NEP], gross primary production [GPP], and ecosystem respiration [ER]) and energy (latent [LE] and sensible heat [H]) and their daily aggregates screened based on half-hourly gap-filling quality criteria. We present a case study with the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC) to:(1) demonstrate the utility of our dataset to benchmark TEMs and (2) provide guidance for model development and refinement. Model skill was evaluated using several statistical metrics and further examined through the flux responses to their environmental controls. Our results suggest that CLASSIC tended to overestimate GPP and ER among all stands. Model performance regarding the energy fluxes (i.e., LE and H) varied greatly among the stands and exhibited a moderate correlation with latitude. We identified strong relationships between simulated fluxes and their environmental controls except for H, thus highlighting the present strengths and limitations of CLASSIC.
Canada's boreal forests and tundra ecosystems are responding to unprecedented climate change with implications for the global carbon (C) cycle and global climate. However, our ability to model the response of Canada's terrestrial ecosystems to climate change is limited and there has been no comprehensive, process‐based assessment of Canada's terrestrial C cycle. We tailor the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC) to Canada and evaluate its C cycling performance against independent reference data. We utilize skill scores to assess model performance against reference data alongside benchmark scores that quantify the level of agreement between the reference data sets to aid in interpretation. Our results demonstrate CLASSIC's sensitivity to prescribed vegetation cover. They also show that the addition of five region‐specific Plant functional types (PFTs) improves CLASSIC's skill at simulating the Canadian C cycle. CLASSIC performs well when tailored to Canada, falls within the range of the reference data sets, and meets or exceeds the benchmark scores for most C cycling processes. New region‐specific land cover products, well‐informed PFT parameterizations, and more detailed reference data sets will facilitate improvements to the representation of the terrestrial C cycle in regional and global land surface models. Incorporating a parameterization for boreal disturbance processes and explicitly representing peatlands and permafrost soils will improve CLASSIC's future performance in Canada and other boreal regions. This is an important step toward a comprehensive process‐based assessment of Canada's terrestrial C cycle and evaluating Canada's net C balance under climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.