Abstract-This paper is concerned with the sampled-data synchronization control problem for a class of dynamical networks. The sampling period considered here is assumed to be timevarying that switches between two different values in a random way with given probability. The addressed synchronization control problem is first formulated as an exponentially mean-square stabilization problem for a new class of dynamical networks that involve both the multiple probabilistic interval delays (MPIDs) and the sector-bounded nonlinearities (SBNs). Then, a novel Lyapunov functional is constructed to obtain sufficient conditions under which the dynamical network is exponentially mean-square stable. Both Gronwall's inequality and Jenson integral inequality are utilized to substantially simplify the derivation of the main results. Subsequently, a set of sampled-data synchronization controllers is designed in terms of the solution to certain matrix inequalities that can be solved effectively by using available software. Finally, a numerical simulation example is employed to show the effectiveness of the proposed sampled-data synchronization control scheme.
The bounded H ∞ state estimation problem is then studied for the same complex network, where the purpose is to design a state estimator to estimate the network states through available output measurements such that, over a finite horizon, the dynamics of the estimation error is guaranteed to be bounded with a given disturbance attenuation level. Again, an RLMI approach is developed for the state estimation problem. Finally, two simulation examples are exploited to show the effectiveness of the results derived in this paper.
This paper is concerned with the synchronization control problem for a class of discrete time-delay complex dynamical networks under a dynamic event-triggered mechanism. For the efficiency of energy utilization, we make the first attempt to introduce a dynamic event-triggering strategy into the design of synchronization controllers for complex dynamical networks. A new discrete-time version of the dynamic event-triggering mechanism is proposed in terms of the absolute errors between control input updates. By constructing an appropriate Lyapunov functional, the dynamics of each network node combined with the introduced event-triggering mechanism are first analyzed, and a sufficient condition is then provided under which the synchronization error dynamics is exponentially ultimately bounded. Subsequently, a set of the desired synchronization controllers is designed by solving a matrix inequality. Finally, a simulation example is provided to verify the effectiveness of the proposed dynamic event-triggered synchronization control scheme.
Abstract-In this paper, the quantized H∞ control problem is investigated for a class of nonlinear stochastic timedelay network-based systems with probabilistic data missing. A nonlinear stochastic system with state delays is employed to model the networked control systems where the measured output and the input signals are quantized by two logarithmic quantizers, respectively. Moreover, the data missing phenomena are modeled by introducing a diagonal matrix composed of Bernoulli distributed stochastic variables taking values of 1 and 0, which describes that the data from different sensors may be lost with different missing probabilities. Subsequently, a sufficient condition is first derived in virtue of the method of sector-bounded uncertainties, which guarantees that the closedloop system is stochastically stable and the controlled output satisfies H∞ performance constraint for all nonzero exogenous disturbances under the zero-initial condition. Then, the sufficient condition is decoupled into some inequalities for the convenience of practical verification. Based on that, quantized H∞ controllers are designed successfully for some special classes of nonlinear stochastic time-delay systems by using Matlab linear matrix inequality toolbox. Finally, a numerical simulation example is exploited to show the effectiveness and applicability of the results derived.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.