Air samples were analyzed from urban, rural, and remote sites near the Great Lakes to investigate the occurrence, concentrations, and spatial and temporal differences of polybrominated diphenyl ethers (PBDE) in air. The concentrations of PBDEs were compared to those of other organohalogen compounds such as PCBs and organochlorine pesticides. The samples were collected in 1997-1999 as part of the Integrated Atmospheric Deposition Network (IADN). To minimize the variability of the data, we selected only samples taken when the atmospheric temperature was 20 +/- 3 degrees C. PBDEs were found in all samples, indicating that these compounds are widely distributed and that they can be transported through the atmosphere to remote areas. The total concentrations of PBDEs were similar to some of the organochlorine pesticides such as sigmaDDT and ranged from 5 pg/m3 near Lake Superior to about 52 pg/m3 in Chicago. In fact, the spatial trend was well correlated to those of PCBs. Our results indicate a relatively constant level from mid-1997 to mid-1999. At 20 +/- 3 degrees C, about 80% of the tetrabromo homologues are in the gas phase and about 70% of the hexabromo homologues are associated with the particle phase. Thus, particle-to-gas partitioning in the atmosphere is an important process for these compounds.
Fish from four lakes, two small lakes in the northeastern United States and two of the Great Lakes, were analyzed to determine the concentrations and spatial variations of polybrominated diphenyl ethers (PBDE) in this region. Three of the lakes were considered to have background levels of PBDEs; one lake was close to a suspected source. The PBDE concentrations were compared to organochlorine pesticide and PCB concentrations. Age and trophic position did not influence the organohalogen concentrations in the fish collected from the four locations. At the three background locations, the sum of PBDE concentrations ranged from 6.9 +/- 1.4 to 18 +/- 1 ng/g wet weight, or 150 +/- 9 to 300 +/- 80 ng/g lipid, and these values were similar to those of some of the organochlorine pesticides, such as total chlordane, but lower than sum of PCB concentrations. At the lake near the suspected source, the sum of PBDE concentration was 65 +/- 8 ng/g wet weight, or 2,400 +/- 600 ng/g lipid, and it exceeded the sum of PCB concentration. The hexabrominated congeners made up 43% of the total mass of PBDEs at this lake, and 7% at the background locations. Fish to sediment concentration ratios indicated that the tetra- through hexa-substituted congeners have a similar bioavailability, while the deca-substituted congener does not seem to be bioavailable at all.
Depuration compounds (DCs) are added to passive air samplers (PAS) prior to deployment to account for the wind-dependency of the sampling rate for gas-phase compounds. This correction is particularly useful for providing comparable data for samplers that are deployed in different environments and subject to different meteorological conditions such as wind speeds. Two types of PAS--the polyurethane foam (PUF) disk sampler and semipermeable membrane devices (SPMDs)--were deployed at eight heights on a 100 m tower to test whether the DC approach could yield air concentrations profiles for PCBs and organochlorine pesticides and account for the wind speed gradient with height. Average wind speeds ranged from 0.3 to 4.5 m s(-1) over the 40 day deployment, increasing with height Two low volume active air samples (AAS), one collected at 25 m and one at 73 m over the 40 day deployment showed no significant concentration differences for target compounds. As expected, the target compounds taken up by PAS reflected the wind profile with height This wind-dependency of the PAS was also reflected in the results of the DCs. A correction based on the DC approach successfully accounted for the effect of wind on PAS sampling rates, yielding a profile consistent with the AAS. Interestingly, in terms of absolute air concentrations, there were differences between the AAS and PAS-derived values for some target compounds. These were attributed to different sampling characteristics of the two approaches that may have resulted in slightly different air masses being sampled. Based on the results of this study, guidelines are presented for the use of DCs and for the calibration of PAS using AAS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.