Mobile wireless sensor networks (MWSNs) are a relatively new type of WSN where the sensor nodes are mobile. Compared to static WSNs, MWSNs provide many advantages, but their mobility introduces the problem of frequent reauthentication. Several mobile node reauthentication schemes based on symmetric key cryptography have been proposed to efficiently handle frequent reauthentication. However, due to security weaknesses such as unconditional forwarding or low-compromise resilience, these schemes do not satisfy the security requirements of MWSNs. In this paper, we propose an energy-efficient and secure mobile node reauthentication scheme (ESMR) for MWSNs that satisfies the security requirements of MWSNs by addressing the security weaknesses of previous studies. ESMR prevents unconditional forwarding by allowing a foreign cluster head to authenticate mobile nodes, providing high-compromise resilience because it limits the use of cryptographic keys for different purposes. Security analysis shows that ESMR meets security requirements and can prevent relevant security attacks. Performance evaluation shows that ESMR is suitable for multi-hop communication environment, where the number of hops between the mobile node and cluster head is two or more. Specifically, ESMR requires less than 6% increased total energy consumption and 3% increased reauthentication latency compared with previous studies; hence, it introduces negligible performance overhead. Considering both performance and security aspects, ESMR also can be applied to single-hop communication environment.
Abstract:In wireless sensor networks (WSNs), the accuracy of location information is vital to support many interesting applications. Unfortunately, sensors have difficulty in estimating their location when malicious sensors attack the location estimation process. Even though secure localization schemes have been proposed to protect location estimation process from attacks, they are not enough to eliminate the wrong location estimations in some situations. The location verification can be the solution to the situations or be the second-line defense. The problem of most of the location verifications is the explicit involvement of many sensors in the verification process and requirements, such as special hardware, a dedicated verifier and the trusted third party, which causes more communication and computation overhead. In this paper, we propose an efficient location verification scheme for static WSN called mutually-shared region-based location verification (MSRLV), which reduces those overheads by utilizing the implicit involvement of sensors and eliminating several requirements. In order to achieve this, we use the mutually-shared region between location claimant and verifier for the location verification. The analysis shows that MSRLV reduces communication overhead by 77% and computation overhead by 92% on average, when compared with the other location verification schemes, in a single sensor verification. In addition, simulation results for the verification of the whole network show that MSRLV can detect the malicious sensors by over 90% when sensors in the network have five or more neighbors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.