The phosphatidylinositol-3-kinase-like kinase ATM (Ataxia – telangiectasia mutated) plays a central role in coordinating the DNA damage responses including cell cycle checkpoint control, DNA repair, and apoptosis. Mutations of ATM cause a spectrum of defects ranging from neurodegeneration to cancer predisposition. However, the mechanism by which DNA damage activates ATM is poorly understood. We show that Cdk5 (cyclin-dependent kinase 5), activated by DNA damage, directly phosphorylates ATM at serine 794 in postmitotic neurons. Phosphorylation at serine 794 precedes and is required for ATM autophosphorylation at serine 1981, and activates ATM kinase activity. Cdk5-ATM signal regulates phosphorylation and function of ATM targets p53 and H2AX. Interruption of Cdk5-ATM pathway attenuates DNA damage-induced neuronal cell cycle reentry and expression of p53 targets PUMA and Bax, protecting neurons from DNA damage-induced death. Thus, activation of Cdk5 by DNA damage serves as a critical signal to initiate ATM response and regulate ATM-dependent cellular processes.
Background & Aims-The Raf kinase inhibitor protein (RKIP) has been identified as a suppressor of the mitogen-activated protein kinase (MAPK) pathway. Loss of RKIP function promotes tumor metastasis in prostate cancer and melanoma. The IGF-I mediated MAPK cascade is often activated in hepatocellular carcinoma (HCC), but the role of RKIP in the molecular pathogenesis of these tumors is unknown. This study was performed to evaluate the role of RKIP in HCC development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.