Abstract.A risk reduction program was developed after debris-flow disaster analysis is conducted using mitigation structures, evacuation measures and community restrained expansion strategy. The risk assessment method delineates hazard zones and analyzes vulnerability and the resilient capacity of an affected area, allowing the prediction of losses of properties and lives, and the corresponding risk. It can also be used to evaluate performance of a risk reduction program. The proposed method was applied to the Songhe community as a case study to assess debris-flow risk and performance of reduction programs consisting of mitigation structures, evacuation measures and a restrained expansion strategy. Total annual risk decreased to $0.01 million from $0.72 million for the No. 1 Torrent and to $0.36 million from $1.22 million for the No. 2 Torrent after mitigation structures were installed, and evacuation measures were implemented based on restrained expansion. Although mitigation structures are costly, they can reduce the size of hazard zones. Delimitating the Designated Soil and Water Conservation Area restrains community expansion and decreases possible losses. Although evacuation measures cannot reduce the size of hazard zones, they effectively increase the resilient capacity of residents. The benefit-cost ratio for mitigation structures exceeds 1.0 for both torrents with an average of 3.87; the benefit-cost ratio for evacuation measures is markedly greater than 1.0. Combining mitigation structures and evacuation measures increases the total benefit with a benefit-cost ratio of 4.38. Analytical results showed that the risk reduction program is cost-effective.
Following the Chichi Earthquake (M(L)=7.3) in 1999, sediment-related disasters, such as landslides and debris flows, have become more frequent in Taiwan. Because engineering structures cannot be fully and rapidly emplaced, the government has initiated non-structural hazard mitigation programs. Initially, community debris flow evacuation drills were promoted in 2000. Typhoon Toraji caused numerous debris flow events in July 2001, and some communities evacuated according to the drills, significantly reducing the numbers of possible casualties. Based on that result, the government expanded the program for evacuation drills. Secondly, the early warning system created after the Chichi Earthquake will prevent many potential future casualties. Rainfall threshold values for debris flow warnings in different areas are determined from information received from local weather stations and modified for local geomorphologic situations. Realtime information is gradually being integrated to create a debris flow disaster warning system, the goal of which is to provide warnings to zones in which debris flows are likely. The warning system was launched in 2005 and has two levels of alarms: yellow and red. The final, red alarm triggers enforced evacuation. Overall, the decrease in casualties from debris flows during the decade after the Chichi Earthquake is not the result of a decrease in number or severity of sediment related disasters, but is more directly related to the gradually improved early warning and evacuation system. However, the compound hazards resulting from Typhoon Morakot in 2009 remind us of the ongoing need for improving the existing mitigation system
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.