The design of novel materials to use simultaneously in an ocular system for driven therapeutics and wound healing is still challenging. Here, we produced nanocomposites of tungsten disulfide carriers with spherical cobalt ferrite nanoparticles (NPs) as core inside a cubic iron oxide NPs shell (WS2/s-CoFe2O4@c-Fe3O4). Transmission electron microscopy (TEM) confirmed that 10 nm s-CoFe2O4@c-Fe3O4 NPs were attached on the WS2 sheet surfaces. The cytotoxicity of the WS2 sheets and nanocomposites were evaluated on bovine cornea endothelial cells (BCECs) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for a duration of three days. The MTT assay results showed low toxicity of the WS2 sheets on BCECs by 67% cell viability at 100 μg/mL in 24 h, while the nanocomposites show 50% cell viability in the same conditions. The magnetic resonance imaging (MRI) of nanocomposites revealed the excellent T2-weighted imaging with an r2 contrast of 108 mM−1 S−1. The in vitro photothermal therapy based on WS2 sheets and WS2/s-CoFe2O4 @c-Fe3O4 nanocomposites using 808 nm laser showed that the maximum thermal energy dispatched in medium at different applied power densities (1200 mw, 1800, 2200, 2600 mW) was for 0.1 mg/mL of the sample solution. The migration assay of BCECs showed that the wound healing was approximately 20% slower for the cell exposed by nanocomposites compared with the control (no exposed BCECs). We believe that WS2/s-CoFe2O4@c-Fe3O4 nanocomposites have a synergic effect as photothermal therapy agents for eye diseases and could be a target in an ocular system using MRI.
Simultaneous delivery of therapeutic agents and energy by magnetic nanoparticles (MNPs) at targeted sites can boost cancer therapy and alleviate side effects. To achieve this goal, however, the magnetic fluid hyperthermia (MFH) usually exhibits the unsufficient thermal efficiency due to their narrow magnetization curves. Besides, an inappropriately large administration concentration also causes health deterioration as shown in an animal model. In this study, the core–shell cube that enhances the coercivity and magnetization related to single‐compositional MNPs by elaborately tuning their interface relaxation via the magnetocrystalline and surface anisotropy is developed. Néel and Brownian relaxation can be adjusted by the particles’ structures to maximize the hyperthermia efficacy upon an alternating‐magnetic‐field (AMF). Furthermore, temozolomide and lactoferrin‐coated CoFe2O4@Fe3O4 core–shell cubes are rapidly internalized by targeting cancer cells and penetrate into tumor spheroids while subjecting to AMF. The targeted cubes with the capabilities of enhanced coercivity, AMF‐induced drug penetration into tumors, and magnetothermal ablation for cancer therapy display potentials for clinical uses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.