Background: Early identification of severe acute pancreatitis (SAP) is key to reducing mortality and improving prognosis. We aimed to establish a radiomics model and nomogram for early prediction of acute pancreatitis (AP) severity based on contrast-enhanced computed tomography (CT) images. Methods: We retrospectively analyzed 215 patients with first-episode AP, including 141 in the training cohort (87 men and 54 women, mean age 51.37±16.09 years) and 74 in the test cohort (40 men and 34 women, mean age 55.49±17.83 years). Radiomics features were extracted from portal venous phase images based on pancreatic and peripancreatic regions. The light gradient boosting machine (LightGBM) algorithm was used for feature selection, a logistic regression (LR) model was established and trained by 10-fold crossvalidation, and a nomogram was established based on the best features. The model's predictive performance was evaluated according to the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, sensitivity, specificity, and accuracy.Results: A total of 13 optimal radiomics features were selected by LightGBM for LR model building. The AUC of the radiomics (LR) model was 0.992 [95% confidence interval (CI): 0.963-0.996] in the training cohort, 0.965 (95% CI: 0.924-0.981) in the validation cohort, and 0.894 (95% CI: 0.789-0.966) in the test cohort. The sensitivity was 0.862 (95% CI: 0.674-0.954), the specificity was 0.800 (95% CI: 0.649-0.899), and the accuracy was 0.824 (95% CI: 0.720-0.919). The nomogram based on the 13 radiomics features showed that SAP would be predicted when the total score was greater than 124. Conclusions:The radiomics model based on enhanced-CT images of pancreatic and peripancreatic regions performed well in the early prediction of AP severity. The nomogram based on selected radiomics features could provide a reference for AP clinical assessment.
Background: The aim of this study was to develop a new model constructed by logistic regression for the early prediction of the severity of acute pancreatitis (AP) using magnetic resonance imaging (MRI) and the Acute Physiology and Chronic Health Evaluation II (APACHE II) scoring system.Methods: This retrospective study included 363 patients with AP. The severity of AP was evaluated by MRI and the APACHE II scoring system, and some subgroups of AP severity were constructed based on a combination of these two scoring systems. The length of stay and occurrence of organ dysfunction were used as clinical outcome indicators and were compared across the different subgroups. We combined the MRI and APACHE II scoring system to construct the regression equations and evaluated the diagnostic efficacy of these models.Results: In the 363 patients, 144 (39.67%) had systemic inflammatory response syndrome (SIRS), 58 (15.98%) had organ failure, and 17 (4.68%) had severe AP. The AP subgroup with a high MRI score and a simultaneously high APACHE II score was more likely to develop SIRS and had a longer hospitalization.The model, which predicted the severity AP by combining extrapancreatic inflammation on magnetic resonance (EPIM) and APACHE II, was successful, with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.912, which was higher than that of any single parameter. Other models that predicted SIRS complications by combining MRI parameters and APACHE II scores were also successful (all P<0.05), and these models based on EPIM and APACHE II scores were superior to other models in predicting outcome. Conclusions:The combination of MRI and clinical scoring systems to assess the severity of AP is feasible, and these models may help to develop personalized treatment and management.
In this editorial we comment on the article published in the recent issue of the World Journal of Gastroenterology [2022; 28 (19): 2123-2136]. We pay attention to how to construct a simpler and more reliable new clinical predictive model to early identify patients at high risk of acute respiratory distress syndrome (ARDS) associated with severe acute pancreatitis (SAP), and to early predict the severity of organ failure from chest computed tomography (CT) findings in SAP patients. As we all know, SAP has a sudden onset, is a rapidly changing condition, and can be complicated with ARDS and even multiple organ dysfunction syndrome, and its mortality rate has remained high. At present, there are many clinical scoring systems for AP, including the bedside index for severity in AP, acute physiology and chronic health evaluation II, systemic inflammatory response syndrome, Japanese severe score, quick sepsis-related organ failure assessment, etc. However, some of these scoring systems are complex and require multiple and difficult clinical parameters for risk stratification. Although the aforementioned biomarkers are readily available, their ability to predict ARDS varies. Accor-dingly, it is extremely necessary to establish a simple and valuable novel model to predict the development of ARDS in AP. In addition, the extra-pancreatic manifestations of AP patients often involve the chest, among which pleural effusion and pulmonary consolidation are the more common complications. Therefore, by measuring the semi-quantitative indexes of chest CT in AP patients, such as the amount of pleural effusion and the number of lobes involved as pulmonary consolidation, it has important reference value for the early diagnosis of SAP complicated with ARDS and is expected to provide a basis for the early treatment of ARDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.