Flexible all-solid-state supercapacitors are fabricated with liquid-exfoliated black-phosphorus (BP) nanoflakes as an electrode material. These devices deliver high specific volumetric capacitance, power density, and energy density, up to 13.75 F cm(-3) , 8.83 W cm(-3) , and 2.47 mW h cm(-3) , respectively, and an outstanding long life span of over 30 000 cycles, demonstrating the excellent performance of the BP nanoflakes as a flexible electrode material in electrochemical energy-storage devices.
Electroosmotic flow with Joule heating effects was examined numerically and experimentally in this work. We used a fluorescence-based thermometry technique to measure the liquid temperature variation caused by Joule heating along a micro capillary. We used a caged-fluorescent dye-based microfluidic visualization technique to measure the electroosmotic velocity profile along the capillary. Sharp temperature drops close to the two ends and a high-temperature plateau in the middle of the capillary were observed. Correspondingly, concave-convex-concave velocity profiles were observed in the inlet-middle-outlet regions of a homogeneous capillary. These velocity perturbations were due to the induced pressure gradients resulting from axial variations of temperature. The measured liquid temperature distribution and the electroosmotic velocity profile along the capillary agree well with the predictions of a theoretical model developed in this paper.
Mode-locked fiber lasers are currently undergoing a significant evolution towards higher pulse energies and shorter pulse durations. A key enabler in this progress has been the discovery of novel saturable absorbers (SA) such as carbon nanotubes (CNT) and graphene. The exceptional properties of CNTs as SA have been extensively studied in recent years. Graphene, a one atom thick planar sheet of carbon atoms arranged into a hexagonal lattice, has been recently proposed as an alternative to CNTs in several photonics applications. Here, we propose a method for the integration of graphene into a fiber ferrule using an optical deposition technique, which has been also employed for the deposition of CNT directly on the core of a fiber edge and in tapered fibers. We investigate and compare the optical properties of CNT-SA and graphene-SA fabricated by this optical deposition technique. Soliton-like, mode-locked lasing is confirmed using an erbium doped optical fiber in an all-fiber ring cavity laser configuration.
Li 6 PS 5 X (X = Cl, Br, I) argyrodites possess high ionic conductivity but with rather scattered values due to various processing conditions. In this work, Li 6 PS 5 X solid electrolytes were prepared by solid-state sintering or mechanical alloying and optimized with or without excess Li 2 S. Solid-state sintering prefers excess Li 2 S, whereas mechanical alloying prefers stoichiometric Li 2 S to synthesize high-purity samples with high ionic conductivity. Solid-state sintering is also more suitable than mechanical milling for high ionic conductivity. Li 6 PS 5 Cl with the highest ionic conductivity among Li 6 PS 5 X was comprehensively characterized for electrochemical performance and air stability. MoS 2 /Li 6 PS 5 Cl all-solid-state batteries assembled with Li 6 PS 5 Cl-coated MoS 2 as cathode and with Li 6 PS 5 Cl as solid electrolyte demonstrate high capacity and good cycling stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.