To understand and engineer plant metabolism, we need a comprehensive and accurate annotation of all metabolic information across plant species. As a step towards this goal, we generated genome-scale metabolic pathway databases of 126 algal and plant genomes, ranging from model organisms to crops to medicinal plants (https://plantcyc.org). Of these, 104 have not been reported before.We systematically evaluated the quality of the databases, which revealed that our semi-automated validation pipeline dramatically improves the quality. We then compared the metabolic content across the 126 organisms using multiple correspondence analysis and found that Brassicaceae, Poaceae, and Chlorophyta appeared as metabolically distinct groups. To demonstrate the utility of this resource, we used recently published sorghum transcriptomics data to discover previously unreported trends of metabolism underlying drought tolerance. We also used single-cell transcriptomics data from the Arabidopsis root to infer cell typespecific metabolic pathways. This work shows the quality and quantity of our resource and demonstrates its wide-ranging utility in integrating metabolism with other areas of plant biology.
Plant metabolism is a pillar of our ecosystem, food security, and economy. To understand and engineer plant metabolism, we first need a comprehensive and accurate annotation of all metabolic information across plant species. As a step towards this goal, we previously created the Plant Metabolic Network (PMN), an online resource of curated and computationally predicted information about the enzymes, compounds, reactions, and pathways that make up plant metabolism. Here we report PMN 15, which contains genome-scale metabolic pathway databases of 126 algal and plant genomes, ranging from model organisms to crops to medicinal plants, and new tools for analyzing and viewing metabolism information across species and integrating omics data in a metabolic context. We systematically evaluated the quality of the databases, which revealed that our semi-automated validation pipeline dramatically improves the quality. We then compared the metabolic content across the 126 organisms using multiple correspondence analysis and found that Brassicaceae, Poaceae, and Chlorophyta appeared as metabolically distinct groups. To demonstrate the utility of this resource, we used recently published sorghum transcriptomics data to discover previously unreported trends of metabolism underlying drought tolerance. We also used single-cell transcriptomics data from the Arabidopsis root to infer cell-type specific metabolic pathways. This work shows the continued growth and refinement of the PMN resource and demonstrates its wide-ranging utility in integrating metabolism with other areas of plant biology.
Since the entry into genome-enabled biology several decades ago, much progress has been made in determining, describing, and disseminating the functions of genes and their products. Yet, this information is still difficult to access for many scientists and for most genomes. To provide easy access and a graphical summary of the status of genome function annotation for model organisms and bioenergy and food crop species, we created a web application (https://genomeannotation.rheelab.org) to visualize, search, and download genome annotation data for 28 species. The summary graphics and data tables will be updated semi-annually, and snapshots will be archived to provide a historical record of the progress of genome function annotation efforts. Clear and simple visualization of up-to-date genome function annotation status, including the extent of what is unknown, will help address the grand challenge of elucidating the functions of all genes in organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.