Metabolomics represents an emerging and powerful discipline that provides an accurate and dynamic picture of the phenotype of biosystems through the study of potential metabolites that could be used for therapeutic targets and discovery of new drugs. Metabolomic network construction has led to the integration of metabolites associated with the caused perturbation of multiple pathways. Herein, we present a method for the construction of efficient networks with regard to that Jujuboside B (JuB) protects against insomnia as a case study. UPLC/ESI-SYNAPT-HDMS coupled with pattern recognition methods including PCA, PLS-DA, OPLS-DA, and computational systems analysis were integrated to obtain comprehensive metabolomic profiling and pathways of the large biological data sets. Among the regulated pathways, twelve biomarkers were identified and tryptophan metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, arachidonic acid metabolism, and phenylalanine metabolism related network were acutely perturbed. Results not only supplied a systematic view of the development and progression of insomnia but also were used to analyze the therapeutic effects of JuB, a widely used anti-insomina medicine in clinics. The results showed that JuB administration could provide satisfactory effects on insomnia through partially regulating the perturbed pathway. We have constructed a metabolomic feature network of JuB to protect against insomnia. The most promising use in the near future would be to clarify pathways for the drugs and get biomarkers for these pathways, to help guide testable predictions, provide insights into drug action mechanisms, and enable us to increase research productivity toward metabolomic drug discovery.
Novel dual physically cross-linked (DPC) hydrogels with great tensile strength, ultrahigh elongation, and promising repairability are designed by introducing cellulose nanocrystal (CNC) or hydrophobized CNC (CNC-C8) into polymers physically cross-linked by hydrophobic forces. C18 alkyl chain is grafted to N-[3-(dimethylamino)propyl]methacrylamide (DMAPMA) for hydrophobic monomer (DMAPMA-C18), and C8 to CNC surface for hydrophobic CNC (CNC-C8). CNC-C8 (or CNC) DPC hydrogels are synthesized, with monomers N,N-dimethylacrylamide (DMAc) and DMAPMA-C18 polymerized to form the first network physically cross-linked by hydrophobic interactions, on which the secondary cross-linking points are formed by hydrophobic interactions between CNC-C8 and DMAPMA-C18, electrostatic interactions between CNC-C8 (or CNC) and DMAPMA, as well as hydrogen bonding between CNC-C8 (or CNC) and DMAc. Compared with optimum CNC DPC hydrogels of the highest tensile strength (238 ± 8 kPa), the optimum CNC-C8 DPC hydrogel with 0.0675 w/v% DMAPMA-C18 and 0.4 w/v% CNC-C8 possesses stronger tensile strength of 331 ± 32 kPa and excellent elongation of 4268% ± 1446% as well, demonstrating the enhanced mechanical property of the hydrogel by introduced hydrophobic interactions. In addition, such DPC hydrogel can be facilely repaired with tetrahydrofuran (THF) on the cut surfaces while retaining good tensile stress and elongation behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.