Featured Application: This manuscript developed a new self-assembly modular robot (SMR) system SambotII and provided a new vision-based method for efficient and accurate autonomous docking of SMRs. The present work lays a foundation for the future research of modular and swarm robots. Based on the present hardware and software platforms, complex behaviors and various tasks can be achieved on SambotII in the future, such as environment exploration, path planning, robotic swarm control, morphology control and, etc.Abstract: A new self-assembly modular robot (SMR) SambotII is developed based on SambotI, which is a previously-built hybird type SMR that is capable of autonomous movement and self-assembly. As is known, SambotI only has limited abilities of environmental perception and target recognition, because its STM-32 processor cannot handle heavy work, like image processing and path planning. To improve the computing ability, an x86 dual-core CPU is applied and a hierarchical software architecture with five layers is designed. In addition, to enhance its perception abilities, a laser-camera unit and a LED-camera unit are employed to obtain the distance and angle information, respectively, and the color-changeable LED lights are used to identify different passive docking surfaces during the docking process. Finally, the performances of SambotII are verified by docking experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.