Single-domain antibodies are attractive as tumor-targeting vehicles because of their much smaller size than intact antibody molecules. Lidamycin is a macromolecular antitumor antibiotic, which consists of a labile enediyne chromophore (AE) and a noncovalently bound apoprotein (LDP). An enediyne-energized fusion protein VH-LDP-AE composed of single-domain antibody directed against type IV collagenase and lidamycin was prepared by a novel two-step method including DNA recombination and molecular reconstitution. VH-LDP-AE demonstrated extremely potent cytotoxicity to cancer cells and marked antiangiogenic activity in vitro. In the mouse hepatoma 22 model, drugs were administered intravenously as a single dose on day 1 with maximal tolerated doses. VH-LDP-AE (0.25 mg/kg) suppressed the tumor growth by 95.9%, whereas lidamycin (0.05 mg/kg) and mitomycin (1 mg/kg) by 79.6 and 51.1%, respectively. In the HT-1080 xenograft model in nude mice, drugs were given intravenously as a single dose on day 4 after tumor implantation. VH-LDP-AE at 0.25 mg/kg suppressed tumor growth by 76% (P<0.05) compared with that of lidamycin at 0.05 mg/kg (53%) on day 18. No obvious toxic effects were observed in all groups during treatments. The results showed that energized fusion protein VH-LDP-AE was more effective than lidamycin and mitomycin. These properties, together with its much smaller size than conventional antibody-based agents, suggested that VH-LDP-AE would be a promising candidate for cancer-targeting therapy. In addition, the two-step approach could serve as a new technology platform for making a series of highly potent engineered antibody-based drugs for a variety of cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.