Ribotypes and toxin genotypes of clinical C. difficile isolates in Taiwan are rarely reported. A prospective surveillance study from January 2011 to January 2013 was conducted at the medical wards of a district hospital in southern Taiwan. Of the first toxigenic isolates from 120 patients, 68 (56.7%) of 120 isolates possessed both tcdA and tcdB. Of 52 (43.3%) with tcdB and truncated tcdA (tcdA-/tcdB+), all were ribotype 017 and none had binary toxin or tcdC deletion. Eighteen (15%) toxigenic isolates harbored binary toxins (cdtA and cdtB) and all had tcdC deletion, including Δ39 (C184T) deletion (14 isolates), Δ18 in-frame deletion (3 isolates), and Δ18 (Δ117A) deletion (1 isolate). Eleven of 14 isolates with Δ39 (C184T) deletion belonged to the ribotype 078 family, including ribotype 127 (6 isolates), ribotype 126 (4 isolates), and ribotype 078 (1 isolate). Among 8 patients with consecutive C. difficile isolates, these isolates from 6 (75%) patients were identical, irrespective of the presence or absence of diarrhea, suggestive of persistent fecal carriage or colonization. In conclusion in southern Taiwan, ribotype 017 isolates with a tcdA-/tcdB+ genotype were not uncommon and of C. difficile isolates with binary toxin, the ribotype 078 family was predominant.
Current antibiotic treatments fail to eliminate the Clostridium difficile ( C. difficile ) spores and induce dysbiosis and intestinal inflammation via off-target effect, which causes refractory C. difficile infection raise an unmet need for a spore-specific antimicrobial treatment. We developed a sporicidal and antimicrobial vancomycin-loaded spore-targeting iron oxide nanoparticle (van-IONP) that selectively binds to C. difficile spores. Cryo-electron microscopy showed that vancomycin-loaded nanoparticles can target and completely cover spore surfaces. They not only successfully delayed the germination of the spores but also inhibited ∼50% of vegetative cell outgrowth after 48 h of incubation. The van-IONPs also inhibited the interaction of spores with HT-29 intestinal mucosal cells in vitro . In a murine model of C. difficile infection, the van-IONP significantly protected the mice from infected by C. difficile infection, reducing intestinal inflammation, and facilitated superior mucosal viability compared with equal doses of free vancomycin. This dual-function targeted delivery therapy showed advantages over traditional therapeutics in treating C. difficile infection.
BackgroundClostridioides difficile is the leading cause of nosocomial infectious diarrhea. Toll-like receptors (TLRs) are the major components of innate immunity that sense pathogens. The relationship between TLRs and C. difficile infection (CDI) was analyzed in clinical patients and a mouse model.Materials and MethodsA prospective investigation was conducted in medical wards of Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan, from January 2011 to January 2013. Adult patients were followed up for the development of CDI. Single nucleotide polymorphisms (SNPs) of TLR2 and TLR4 were analyzed to assess the relationship between genetic polymorphisms and the development of CDI. A mouse model of CDI was used to investigate the pathogenic role of TLRs in CDI, TLR2 and TLR4 knockout (Tlr2-/- and Tlr4-/-) mice.ResultsIn the prospective study, 556 patients were enrolled, and 6.5% (36) of patients, accounting for 3.59 episodes per 1000 patient-days, developed CDI. Of 539 patients with available blood samples, the TLR2 rs3804099 polymorphism was more often noted in those with CDI than in those without CDI (64.5% vs. 46.1%; P = 0.046) but was not significant in multivariate analysis. Because the TLR2 rs3804099 polymorphism was moderately associated with CDI, the role of TLR2 and TLR4 was further evaluated in a mouse model. Both Tlr2-/- and Tlr4-/- mice showed more severe CDI disease than wild-type mice in terms of body weight change and fecal content five days after oral challenge with C. difficile. Furthermore, Tlr2-/- mice suffered from more severe disease than Tlr4-/- mice, as evidenced by stool consistency, cecum weight, and survival rate.ConclusionThe TLR2 rs3804099 polymorphism is marginally associated with the development of CDI, and the pathogenic role of TLR2 is further supported by a mouse model.
Argyrodite sulfide-based solid electrolyte Li6PS5Cl (LPSC) is considered to have great potential in solid-state battery applications due to its ion conductivity being superior to that of liquid electrolytes. However, interfacial...
Sulfide-based solid-state lithium-ion batteries (SSLIB) have attracted a lot of interest globally in the past few years for their high safety and high energy density over the traditional lithium-ion batteries. However, sulfide electrolytes (SEs) are moisturesensitive which pose significant challenges in the material preparation and cell manufacturing. To the best of our knowledge, there is no tool available to probe the types and the strength of the basic sites in sulfide electrolytes, which is crucial for understanding the moisture stability of sulfide electrolytes. Herein, we propose a new spectral probe with the Lewis base indicator BBr 3 to probe the strength of Lewis basic sites on various sulfide electrolytes by 11 B solid-state NMR spectroscopy ( 11 B-NMR). The active sulfur sites and the corresponding strength of the sulfide electrolytes are successfully evaluated by the proposed Lewis base probe. The probed strength of the active sulfur sites of a sulfide electrolyte is consistent with the results of DFT (density functional theory) calculation and correlated with the H 2 S generation rate when the electrolyte was exposed in moisture atmosphere. This work paves a new way to investigate the basicity and moisture stability of the sulfide electrolytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.