BackgroundThe relationship between temperature and myocardial infarction has not been fully explained. In this study, we identified the threshold temperature and examined the relationship between temperature and emergency admissions due to MI in Korea.MethodsPoisson generalized additive model analyses were used to assess the short-term effects of temperature (mean, maximum, minimum, diurnal) on MI emergency visits, after controlling for meteorological variable and air pollution (PM10, NO2). We defined the threshold temperature when the inflection point showed a statistically significant difference in the regression coefficients of the generalized additive models (GAMs) analysis. The analysis was performed on the following subgroups: geographical region, gender, age (<75 years or ≥75 years), and MI status (STEMI or non-STEMI).ResultsThe threshold temperatures during heat exposure were for the maximum temperature as 25.5–31.5°C and for the mean temperature as 27.5–28.5°C. The threshold temperatures during cold exposure were for the minimum temperature as −2.5–1.5°C. Relative risks (RRs) of emergency visits above hot temperature thresholds ranged from 1.02 to 1.30 and those below cold temperature thresholds ranged from 1.01 to 1.05. We also observed increased RRs ranged from 1.02 to 1.65 of emergency visits when temperatures changes on a single day or on successive days.ConclusionsWe found a relationship between temperature and MI occurrence during both heat and cold exposure at the threshold temperature. Diurnal temperature or temperature change on successive days also increased MI risk.
Most previous studies have focused on the association between acute myocardial function (AMI) and temperature by gender and age. Recently, however, concern has also arisen about those most susceptible to the effects of temperature according to socioeconomic status (SES). The objective of this study was to determine the effect of heat and cold on hospital admissions for AMI by subpopulations (gender, age, living area, and individual SES) in South Korea. The Korea National Health Insurance (KNHI) database was used to examine the effect of heat and cold on hospital admissions for AMI during 2004–2012. We analyzed the increase in AMI hospital admissions both above and below a threshold temperature using Poisson generalized additive models (GAMs) for hot, cold, and warm weather. The Medicaid group, the lowest SES group, had a significantly higher RR of 1.37 (95% CI: 1.07–1.76) for heat and 1.11 (95% CI: 1.04–1.20) for cold among subgroups, while also showing distinctly higher risk curves than NHI for both hot and cold weather. In additions, females, older age group, and those living in urban areas had higher risks from hot and cold temperatures than males, younger age group, and those living in rural areas.
ObjectivesSeveral studies identified a heterogeneous impact of heat on mortality in hot and cool regions during a fixed period, whereas less evidence is available for changes in risk over time due to climate change in these regions. We compared changes in risk during periods without (1996–2000) and with (2008–2012) heatwave warning forecasts in regions of South Korea with different climates.MethodsStudy areas were categorised into 3 clusters based on the spatial clustering of cooling degree days in the period 1993–2012: hottest cluster (cluster H), moderate cluster (cluster M) and cool cluster (cluster C). The risk was estimated according to increases in the daily all-cause, cardiovascular and respiratory mortality per 1°C change in daily temperature above the threshold, using a generalised additive model.ResultsThe risk of all types of mortality increased in cluster H in 2008–2012, compared with 1996–2000, whereas the risks in all-combined regions and cooler clusters decreased. Temporal increases in mortality risk were larger for some vulnerable subgroups, including younger adults (<75 years), those with a lower education and blue-collar workers, in cluster H as well as all-combined regions. Different patterns of risk change among clusters might be attributable to large increases in heatwave frequency or duration during study periods and the degree of urbanisation in cluster H.ConclusionsPeople living in hotter regions or with a lower socioeconomic status are at higher risk following an increasing trend of heat-related mortality risks. Continuous efforts are needed to understand factors which affect changes in heat-related mortality risks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.