Background Modern smartphone use is pervasive and could be an accessible method of evaluating the circadian rhythm and social jet lag via a mobile app. Objective This study aimed to validate the app-recorded sleep time with daily self-reports by examining the consistency of total sleep time (TST), as well as the timing of sleep onset and wake time, and to validate the app-recorded circadian rhythm with the corresponding 30-day self-reported midpoint of sleep and the consistency of social jetlag. Methods The mobile app, Rhythm, recorded parameters and these parameters were hypothesized to be used to infer a relative long-term pattern of the circadian rhythm. In total, 28 volunteers downloaded the app, and 30 days of automatically recorded data along with self-reported sleep measures were collected. Results No significant difference was noted between app-recorded and self-reported midpoint of sleep time and between app-recorded and self-reported social jetlag. The overall correlation coefficient of app-recorded and self-reported midpoint of sleep time was .87. Conclusions The circadian rhythm for 1 month, daily TST, and timing of sleep onset could be automatically calculated by the app and algorithm.
BACKGROUND Modern smartphone use is pervasive and could be an accessible method of evaluating the circadian rhythm and social jet lag via a mobile app. OBJECTIVE This study aimed to validate the app-recorded sleep time with daily self-reports by examining the consistency of total sleep time (TST), as well as the timing of sleep onset and wake time, and to validate the app-recorded circadian rhythm with the corresponding 30-day self-reported midpoint of sleep and the consistency of social jetlag. METHODS The mobile app, Rhythm, recorded parameters and these parameters were hypothesized to be used to infer a relative long-term pattern of the circadian rhythm. In total, 28 volunteers downloaded the app, and 30 days of automatically recorded data along with self-reported sleep measures were collected. RESULTS No significant difference was noted between app-recorded and self-reported midpoint of sleep time and between app-recorded and self-reported social jetlag. The overall correlation coefficient of app-recorded and self-reported midpoint of sleep time was .87. CONCLUSIONS The circadian rhythm for 1 month, daily TST, and timing of sleep onset could be automatically calculated by the app and algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.