Purpose To compare the diagnostic performance of gadoxetic acid-enhanced liver magnetic resonance (MR) imaging with that of contrast material-enhanced multidetector computed tomography (CT) in the detection of borderline hepatocellular nodules in patients with liver cirrhosis and to determine the Liver Imaging Reporting and Data System (LI-RADS) categories of these detected nodules. Materials and Methods The institutional review board approved this retrospective study and waived the informed consent requirement. Sixty-eight patients with pathologically proven dysplastic nodules (DNs) (low-grade DNs, n = 20; high-grade DNs, n = 17), early hepatocellular carcinomas (HCCs) (n = 42), or progressed HCCs (n = 33) underwent gadoxetic acid-enhanced MR imaging and multidetector CT. An additional 57 patients without any DNs or HCCs in the explanted livers were included as control subjects. Three radiologists independently graded the presence of liver nodules on a five-point confidence scale and assigned LI-RADS categories by using imaging findings. Jackknife alternative free-response receiver operating characteristics (JAFROC) software was used to compare the diagnostic accuracy of each modality in lesion detection. Results Reader-averaged figures of merit estimated with JAFROC software to detect hepatocellular nodules were 0.774 for multidetector CT and 0.842 for MR imaging (P = .002). Readers had significantly higher detection sensitivity for early HCCs with MR imaging than with multidetector CT (78.6% vs 52.4% [P = .001], 71.4% vs 50.0% [P = .011], and 73.8% vs 50.0% [P = .001], respectively). A high proportion of overall detected early HCCs at multidetector CT (59.4%) and MR imaging (72.3%) were categorized as LI-RADS category 4. Most early HCCs (76.2%) and high-grade DNs (82.4%) demonstrated hypointensity on hepatobiliary phase images. In total, 30 more LI-RADS category 4 early HCCs were identified with MR imaging than with multidetector CT across all readers. Conclusion Gadoxetic acid-enhanced MR imaging performed significantly better in the detection of high-risk borderline nodules, especially early HCCs, than did multidetector CT. RSNA, 2017 Online supplemental material is available for this article.
Integrated whole-body PET/MRI added value to CECT in the detection of metastatic lesions and characterization of indeterminate lesions, albeit with limited performance for small pulmonary metastatic nodules. The results suggest that PET/MRI may aid in the selection of more appropriate treatment strategies for patients with colorectal cancer.
Original ArticlePurpose Mutation of the Kirsten Ras (KRAS) oncogene is present in 30%-40% of colorectal cancers and has prognostic significance in rectal cancer. In this study, we examined the ability of radiomics features extracted from T2-weighted magnetic resonance (MR) images to differentiate between tumors with mutant KRAS and wild-type KRAS.
Materials and MethodsSixty patients with primary rectal cancer (25 with mutant KRAS, 35 with wild-type KRAS) were retrospectively enrolled. Texture analysis was performed in all regions of interest on MR images, which were manually segmented by two independent radiologists. We identified potentially useful imaging features using the two-tailed t test and used them to build a discriminant model with a decision tree to estimate whether KRAS mutation had occurred.
ResultsThree radiomic features were significantly associated with KRAS mutational status (p < 0.05). The mean (and standard deviation) skewness with gradient filter value was significantly higher in the mutant KRAS group than in the wild-type group (2.04±0.94 vs. 1.59±0.69). Higher standard deviations for medium texture (SSF3 and SSF4) were able to differentiate mutant KRAS (139.81±44.19 and 267.12±89.75, respectively) and wild-type KRAS (114.55±29.30 and 224.78±62.20). The final decision tree comprised three decision nodes and four terminal nodes, two of which designated KRAS mutation. The sensitivity, specificity, and accuracy of the decision tree was 84%, 80%, and 81.7%, respectively.
ConclusionUsing MR-based texture analysis, we identified three imaging features that could differentiate mutant from wild-type KRAS. T2-weighted images could be used to predict KRAS mutation status preoperatively in patients with rectal cancer.
A subepithelial lesion with a lesion-to-aorta ratio less than 0.86 in the portal venous phase or not in the gastric antrum or duodenum is never a glomus tumor. On the contrary, a subepithelial lesion with hemangioma-like enhancement during dynamic CT is essentially a glomus tumor. On the basis of these CT findings, glomus tumor can be differentiated from other subepithelial lesions with high diagnostic accuracy.
• Diagnostic performance of MRI for EMVI after preoperative chemoradiotherapy is good. • The mean DFS was lower in yMR-EMVI-positive than yMR-EMVI-negative patients. • MRI can facilitate prognosis prediction of rectal cancer patients with preoperative chemoradiotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.