Several mechanisms of action have been proposed for DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi); mainly based on candidate gene approaches. However, less is known about their genome-wide transcriptional and epigenomic consequences. By mapping global transcription start site (TSS) and chromatin dynamics, we observed the cryptic transcription of thousands of treatment-induced non-annotated TSSs (TINATs) following DNMTi and/or HDACi treatment. The resulting transcripts frequently splice into protein-coding exons and encode truncated or chimeric open reading frames translated into products with predicted abnormal or immunogenic functions. TINAT transcription after DNMTi coincided with DNA hypomethylation and gain in classical promoter histone marks, while HDACi specifically induced a subset of TINATs in association with H2AK9ac, H3K14ac, and H3K23ac. Despite this mechanistic difference, both inhibitors convergently induced transcription from identical sites since we found TINATs to be encoded in solitary long-terminal repeats of the LTR12 family, epigenetically repressed in virtually all normal cells. In contrast to genetic mutations, epigenetic changes are potentially reversible, which is deeming them an attractive target for cancer treatment. Inhibitors directed against DNA methyltransferases (DNMTi) and histone deacetylases (HDACi) are used for the treatment of several haematopoietic malignancies1,2. However, despite their clinical use for several years, there is still a lack of knowledge regarding the mode of action3. Two previous studies on DNMTi in cancer cell lines reported the up-regulation of double stranded RNA (dsRNA) molecules originating from codogenic endogenous retroviruses (ERV) followed by an interferon response and the induction of viral defense genes4,5. However, it remains unclear how other classes of epigenetic drugs integrate into these findings and whether there are additional effects, potentially missed by candidate gene approaches. Here, we globally mapped DNMTi and HDACi-induced transcriptomic and epigenomic changes by using whole-genome profiling technologies (Supplementary Fig. 1 and Supplementary Table 1) and show that the vast majority of TSSs that transcriptionally responded towards epigenetic modulation were cryptic, currently non-annotated TSSs encoded in solitary long-terminal repeats (LTRs).
In Huntington’s disease (HD), expansion of CAG codons within the huntingtin gene (HTT) leads to the aberrant formation of protein aggregates and the differential degeneration of striatal medium spiny neurons (MSNs). Modeling HD using patient-specific MSNs has been challenging, as neurons differentiated from induced pluripotent stem cells are free of aggregates and lack an overt cell death phenotype. Here we generated MSNs from HD patient fibroblasts through microRNA-based neuronal conversion, previously shown to bypass the induction of pluripotency and retain age signatures of original fibroblasts. We found that patient MSNs consistently exhibited mutant HTT (mHTT) aggregates, mHTT-dependent DNA damage, mitochondrial dysfunction, and spontaneous degeneration over time in culture. We further provide evidence that erasure of age stored in starting fibroblasts and neuronal conversion of pre-symptomatic HD patient fibroblasts resulted in differential manifestation of cellular phenotypes associated with HD, highlighting the importance of age in modeling late-onset neurological disorders.
Introduction Transposable element (TE) derived sequences comprise half of our genome and DNA methylome, and are presumed densely methylated and inactive. Examination of the genome-wide DNA methylation status within 928 TE subfamilies in human embryonic and adult tissues revealed unexpected tissue-specific and subfamily-specific hypomethylation signatures. Genes proximal to tissue-specific hypomethylated TE sequences were enriched for functions important for the tissue type and their expression correlated strongly with hypomethylation of the TEs. When hypomethylated, these TE sequences gained tissue-specific enhancer marks including H3K4me1 and occupancy by p300, and a majority exhibited enhancer activity in reporter gene assays. Many such TEs also harbored binding sites for transcription factors that are important for tissue-specific functions and exhibited evidence for evolutionary selection. These data suggest that sequences derived from TEs may be responsible for wiring tissue type-specific regulatory networks, and have acquired tissue-specific epigenetic regulation.
Neuropathic pain encompasses a diverse array of clinical entities affecting 7–10% of the population, which is challenging to adequately treat. Several promising therapeutics derived from molecular discoveries in animal models of neuropathic pain have failed to translate following unsuccessful clinical trials suggesting the possibility of important cellular-level and molecular differences between animals and humans. Establishing the extent of potential differences between laboratory animals and humans, through direct study of human tissues and/or cells, is likely important in facilitating translation of preclinical discoveries to meaningful treatments. Patch-clamp electrophysiology and RNA-sequencing was performed on dorsal root ganglia taken from patients with variable presence of radicular/neuropathic pain. Findings establish that spontaneous action potential generation in dorsal root ganglion neurons is associated with radicular/neuropathic pain and radiographic nerve root compression. Transcriptome analysis suggests presence of sex-specific differences and reveals gene modules and signalling pathways in immune response and neuronal plasticity related to radicular/neuropathic pain that may suggest therapeutic avenues and that has the potential to predict neuropathic pain in future cohorts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.