Using molecular dynamics simulation, we show direct evidence of the unexpected phenomenon of "water that does not wet a water monolayer" at room temperature. This phenomenon is attributed to the structure of the water beneath the water droplet, which exhibits an ordered water monolayer. Remarkably, there remains a considerable number of dangling OH bonds in this room temperature water monolayer, in contrast with the absence of dangling OH bonds at cryogenic temperature.
The generation of α-imino gold carbenes via gold-catalyzed intermolecular reaction of azides and ynamides is disclosed. This new methodology allows for highly regioselective access to valuable 2-aminoindoles and 3-amino-β-carbolines in generally good to excellent yields. A mechanistic rationale for this tandem reaction, especially for the observed high regioselectivity, is supported by DFT calculations.
Ynamides are special
alkynes bearing an electron-withdrawing group
on the nitrogen atom, and they have been extensively studied over
the past decade. However, the addition of functional groups across
ynamides in these transformations typically occurs at the α-position
of the ynamide because of the strong polarization of the alkynyl moiety.
Studies of umpolung transformations in ynamide chemistry may not only
discover organic reactions but also lead to divergent organic syntheses,
thus significantly enriching ynamide chemistry. This review summarizes
four main strategies utilized to achieve reversal of the regioselectivity,
including the ring strain factor, metal–carbonyl (or sulfonyl)
chelation, and base-mediated and radical-initiated addition.
The wetting behavior of water on the solid surfaces is fundamental to various physical, chemical and biological processes. Conventionally, the surface with charges or charge dipoles is hydrophilic, whereas the non-polar surface is hydrophobic though some exceptions were recently reported. Using molecular dynamics simulations, we show that there is a critical length of the charge dipoles on the solid surface. The solid surface still exhibited hydrophobic behavior when the dipole length was less than the critical value, indicating that the water molecules on the solid surface seemed not “feel” attractive interactions from the charge dipoles on the solid surface. Those unexpected observations result from the collective interactions between the water molecules and charge dipoles on the solid surface, where the steric exclusion effect between water molecules greatly reduces the water-dipole interactions. Remarkably, the steric exclusion effect is also important for surfaces with charge dipole lengths greater than this critical length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.