The importance of water on molecular ion structuring and charging mechanism of solid interfaces in room temperature ionic liquid (RTIL) is unclear and has been largely ignored. Water may alter structures, charging characteristics, and hence performance at electrified solid/RTIL interfaces and is utilized in various fields including energy storage, conversion, or catalysis. Here, atomic force microscopy and surface forces apparatus experiments are utilized to directly measure how water alters the interfacial structuring and charging characteristics of [C2mim][Tf2N] on mica and electrified gold surfaces. On hydrophilic and ionophobic mica surfaces, water‐saturated [C2mim][Tf2N] dissolves surface‐bound cations, which leads to high surface charging and strong layering. In contrast, layering of dry RTIL at weakly charged mica surfaces is weakly structured. At electrified, hydrophobic, and ionophilic gold electrodes, significant water effects are found only at positive applied electrochemical potentials. Here, the influence of water is limited to interactions within the RTIL layers, and is not related to a direct electrosorption of water on the polarized electrode. More generally, the results suggest that effects of water on interfacial structuring of RTIL strongly depend on both (1) surface charging mechanism and (2) interfacial wetting properties. This may greatly impact utilization/design of RTILs and surfaces for interface‐dominated processes.
The interfacial decomposition products forming the so‐called solid–electrolyte interphase (SEI) significantly determine the destiny of a Li‐ion battery. Ultimate knowledge of its detailed behavior and better control are required for higher rates, longer life‐time, and increased safety. Employing an electrochemical surface force apparatus, it is possible to control the growth and to investigate the mechanical properties of an SEI in a lithium‐ion battery environment. This new approach is here introduced on a gold model system and reveals a compressible film at all stages of SEI growth. The demonstrated methodology provides a unique tool for analyzing electrochemical battery interfaces, in particular in view of alternative electrolyte formulations and artificial interfaces.
Interfaces are essential in electrochemical processes, providing a critical nanoscopic design feature for composite electrodes used in Li-ion batteries. Understanding the structure, wetting and mobility at nano-confined interfaces is important for improving the efficiency and lifetime of electrochemical devices. Here we use a Surface Forces Apparatus to quantify the initial wetting of nanometre-confined graphene, gold and mica surfaces by Li-ion battery electrolytes. Our results indicate preferential wetting of confined graphene in comparison with gold or mica surfaces because of specific interactions of the electrolyte with the graphene surface. In addition, wetting of a confined pore proceeds via a profoundly different mechanism compared with wetting of a macroscopic surface. We further reveal the existence of molecularly layered structures of the confined electrolyte. Nanoscopic confinement of less than 4–5 nm and the presence of water decrease the mobility of the electrolyte. These results suggest a lower limit for the pore diameter in nanostructured electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.